ABCC7 p.Tyr275*
ClinVar: |
c.825C>G
,
p.Tyr275*
D
, Likely pathogenic
|
CF databases: |
c.825C>G
,
p.Tyr275*
D
, CF-causing
|
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Molecular analysis in Brazilian cystic fibrosis pa... Genet Test. 2000;4(1):69-74. Bernardino AL, Ferri A, Passos-Bueno MR, Kim CE, Nakaie CM, Gomes CE, Damaceno N, Zatz M
Molecular analysis in Brazilian cystic fibrosis patients reveals five novel mutations.
Genet Test. 2000;4(1):69-74., [PMID:10794365]
Abstract [show]
We have performed molecular genetic analyses on 160 Brazilian patients diagnosed with cystic fibrosis (CF). Screening of mutations in 320 CF chromosomes was performed through single strand conformation polymorphism (SSCP) and heteroduplex analyses assay followed by DNA sequencing of the 27 exons and exon/intron boundaries of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The frequency of CFTR variants of T-tract length of intron 8 (IVS8 Tn) was also investigated. This analysis enabled the detection of 232/320 CF mutations (72.2%) and complete genotyping of 61% of the patients. The deltaF508 mutation was found in 48.4% of the alleles. Another fifteen mutations (previously reported) were detected: G542X, R1162X, N1303K, R334W, W1282X, G58E, L206W, R553X, 621+1G-->T, V232D, 1717-1G-->A, 2347 delG, R851L, 2789+5G-->A, and W1089X. Five novel mutations were identified, V201M (exon 6a), Y275X (exon 6b), 2686 insT (exon 14a), 3171 delC (exon 17a), and 3617 delGA (exon 19). These results contribute to the molecular characterization of CF in the Brazilian population. In addition, the identification of the novel mutation Y275X allowed prenatal diagnosis in a high-risk fetus.
Comments [show]
None has been submitted yet.
No. Sentence Comment
7 Five novel mutations were identified, V201M (exon 6a), Y275X (exon 6b), 2686 insT (exon 14a), 3171 delC (exon 17a), and 3617 delGA (exon 19).
X
ABCC7 p.Tyr275* 10794365:7:55
status: NEW9 In addition, the identification of the novel mutation Y275X allowed prenatal diagnosis in a high-risk fetus.
X
ABCC7 p.Tyr275* 10794365:9:54
status: NEW66 Y275X: This GRC transition was detected at position 957 in exon 6b, resulting in the replacement of a tyrosine (position 275) by a termination codon.
X
ABCC7 p.Tyr275* 10794365:66:0
status: NEW84 GEN OTYPES, FREQUENCIES, AN D PRESENCE OF PI FRO M 160 CF PATIE NTS (320 CF CHROM OSOM ES) Number and frequency (%) Genotype Number Frequency (%) of patients with PI D F508/D F508 47 29.40 47 (100%) D F508/G542X 13 8.10 13 (100%) D F508/R1162X 6 3.80 6 (100%) D F508/R334W 5 3.10 3 (60%) D F508/N1303K 3 1.90 3 (100%) D F508/W1282X 2 1.20 2 (100%) D F508/G58E 2 1.20 1 (50%) D F508/L206W 1 0.62 0 D F508/R553X 1 0.62 1 (100%) D F508/R851L 1 0.62 0 D F508/2789 1 5g ® A 1 0.62 0 D F508/3617delGA 1 0.62 1 (100%) D F508/3171delC 1 0.62 1 (100%) D F508/2686insT 1 0.62 1 (100%) D F508/Y275X 1 0.62 1 (100%) D F508/U 22 13.80 14 (64%) G542X/G542X 3 1.90 3 (100%) G542X/N1303K 3 1.90 2 (67%) G542X/R1162X 1 0.62 1 (100%) G542X/U 5 3.10 4 (80%) N1303K/R1162X 1 0.62 1 (100%) N1303K/G58E 1 0.62 0 2347delG/2347delG 1 0.62 1 (100%) R334W/V232D 1 0.62 0 R334W/W1089X 1 0.62 1 (100%) R334W/U 1 0.62 1 (100%) W1282X/U 1 0.62 1 (100%) G58E/U 1 0.62 1 (100%) R553X/U 1 0.62 1 (100%) L206W/U 1 0.62 0 621 1 1G ® T/U 1 0.62 1 (100%) 1717-1G ® A/U 1 0.62 Not known V201M/U 1 0.62 0 U/U 27 16.90 12 (44%) Total 160 100 - U, Unknown CF mutation.
X
ABCC7 p.Tyr275* 10794365:84:587
status: NEW116 One of them, the Y275X mutation (Fig. 1), is probably of Indian origin and was particularly important because it allowed a prenatal diagnosis in a high-risk fetus.
X
ABCC7 p.Tyr275* 10794365:116:17
status: NEW118 Mutation Y275X.
X
ABCC7 p.Tyr275* 10794365:118:9
status: NEW125 However, the Y275X mutation identified in the father was not found in the fetus.
X
ABCC7 p.Tyr275* 10794365:125:13
status: NEW[hide] Extensive sequencing of the CFTR gene: lessons lea... Hum Genet. 2005 Dec;118(3-4):331-8. Epub 2005 Sep 28. McGinniss MJ, Chen C, Redman JB, Buller A, Quan F, Peng M, Giusti R, Hantash FM, Huang D, Sun W, Strom CM
Extensive sequencing of the CFTR gene: lessons learned from the first 157 patient samples.
Hum Genet. 2005 Dec;118(3-4):331-8. Epub 2005 Sep 28., [PMID:16189704]
Abstract [show]
Cystic fibrosis (CF) is one of the most common monogenic diseases affecting Caucasians and has an incidence of approximately 1:3,300 births. Currently recommended screening panels for mutations in the responsible gene (CF transmembrane regulator gene, CFTR) do not detect all disease-associated mutations. Our laboratory offers extensive sequencing of the CFTR (ABCC7) gene (including the promoter, all exons and splice junction sites, and regions of selected introns) as a clinical test to detect mutations which are not found with conventional screening. The objective of this report is to summarize the findings of extensive CFTR sequencing from our first 157 consecutive patient samples. In most patients with classic CF symptoms (18/24, 75%), extensive CFTR sequencing confirmed the diagnosis by finding two disease-associated mutations. In contrast, only 5 of 75 (7%) patients with atypical CF had been identified with two CFTR mutations. A diagnosis of CF was confirmed in 10 of 17 (58%) newborns with either positive sweat chloride readings or positive immunoreactive trypsinogen (IRT) screen results. We ascertained ten novel sequence variants that are potentially disease-associated: two deletions (c.1641AG>T, c.2949_2853delTACTC), seven missense mutations (p.S158T, p.G451V, p.K481E, p.C491S, p.H949L, p.T1036N, p.F1099L), and one complex allele ([p.356_A357del; p.358I]). We ascertained three other apparently novel complex alleles. Finally, several patients were found to carry partial CFTR gene deletions. In summary, extensive CFTR gene sequencing can detect rare mutations which are not found with other screening and diagnostic tests, and can thus establish a definitive diagnosis in symptomatic patients with previously negative results. This enables carrier detection and prenatal diagnosis in additional family members.
Comments [show]
None has been submitted yet.
No. Sentence Comment
74 DF508/c.546insCTA CF; lung symptoms; PS; 2 sibs with CF NG Pos p.R1066C/c.3272-26 A>G Mild CF 40 115 [p.V562I;p.A1006E]b /p.R1158X CF, FTT 6 Not done DF508/c.1716G>A Classic CF 21 Not done p.R785X/c.2732insA Classic CF, PI 4 Not done DF508/p.R117C Classic CF 2 Not done DF508/p.R75X CF 19 Pos DF508/p.G451Va Mild CF 23 Pos DF508/p.L206W Classic CF 9 150s DF508/p.G542Xc Classic CF 15 Pos p.T1036N/p.T1036Na CF, PS 9 Pos DF508/c.3272-26 A>G Classic CF 33 Not done DF508/p.R117Hc Classic CF 35 Not done DF508/p.A455Ec CF 3 Pos p.G551D/p.Y275X a Novel CFTR variant b Complex CFTR allele c Both mutations are on the ACMG/ACOG panel Table 5 Diagnosis of CF in infants/newborns with abnormal newborn screening results Patient number Genotype Age at sequencing Sex Newborn screen result Sweat chloride concentration (mmol/l)a Phenotype 1 DF508/c.2789+2insA 3 months F Positive sweat test 88,96,89,84 Dx of CF, being treated prophylactically 2 DF508/c.2949del5b 3 months F IRT positive 105 Dx of CF 3 p.G551D/c.1259insA 14 months M Positive sweat test ?
X
ABCC7 p.Tyr275* 16189704:74:535
status: NEW
In reference to DF508 and 1716G>A. Does this mean these two mutation have resulted in "classic CF"? Does this mean 1716G>A is disease causing?
Gibson75 on 2013-08-12 07:00:25
Login to comment
Gibson75 on 2013-08-12 07:00:25