ABCC7 p.Arg170His
ClinVar: |
c.509G>A
,
p.Arg170His
?
, Uncertain significance
|
CF databases: |
c.509G>A
,
p.Arg170His
(CFTR1)
D
, This mutation was seen in a 48 year-old male being investigated for infertility whose other CF mutation is [delta]F508. We have seen this mutation only once in over 200 CF chromosomes screened.(Original Note 27March2001) Reported by Jennifer King (University of Iowa. 22/03/2002): It was also found in a 12 year old male patient who was seen for genetic evaluation following discovery of CBAVD (during a hydrocele repair operation). It turned out that he has a [delta]F508 mutation and a R170H mutation. His sweat test was normal.
c.508_510delC , p.Arg170del (CFTR1) ? , c.508C>G , p.Arg170Gly (CFTR1) ? , This mutation was detected by SSCP. It does not alter a restriction site. c.508C>T , p.Arg170Cys (CFTR1) ? , This mutation was identified on one French CF chromosome. |
Predicted by SNAP2: | A: D (80%), C: D (91%), D: D (95%), E: D (91%), F: D (95%), G: D (91%), H: N (72%), I: D (91%), K: D (63%), L: D (91%), M: D (91%), N: D (91%), P: D (95%), Q: D (85%), S: D (80%), T: D (85%), V: D (91%), W: D (95%), Y: D (91%), |
Predicted by PROVEAN: | A: N, C: D, D: N, E: N, F: D, G: D, H: N, I: D, K: N, L: D, M: N, N: N, P: N, Q: N, S: N, T: N, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] A new approach for identifying non-pathogenic muta... Hum Genet. 2000 Feb;106(2):172-8. Bombieri C, Giorgi S, Carles S, de Cid R, Belpinati F, Tandoi C, Pallares-Ruiz N, Lazaro C, Ciminelli BM, Romey MC, Casals T, Pompei F, Gandini G, Claustres M, Estivill X, Pignatti PF, Modiano G
A new approach for identifying non-pathogenic mutations. An analysis of the cystic fibrosis transmembrane regulator gene in normal individuals.
Hum Genet. 2000 Feb;106(2):172-8., [PMID:10746558]
Abstract [show]
Given q as the global frequency of the alleles causing a disease, any allele with a frequency higher than q minus the cumulative frequency of the previously known disease-causing mutations (threshold) cannot be the cause of that disease. This principle was applied to the analysis of cystic fibrosis transmembrane conductance regulator (CFTR) mutations in order to decide whether they are the cause of cystic fibrosis. A total of 191 DNA samples from random individuals from Italy, France, and Spain were investigated by DGGE (denaturing gradient gel electrophoresis) analysis of all the coding and proximal non-coding regions of the gene. The mutations detected by DGGE were identified by sequencing. The sample size was sufficient to select essentially all mutations with a frequency of at least 0.01. A total of 46 mutations was detected, 20 of which were missense mutations. Four new mutations were identified: 1341+28 C/T, 2082 C/T, L1096R, and I11131V. Thirteen mutations (125 G/C, 875+40 A/G, TTGAn, IVS8-6 5T, IVS8-6 9T, 1525-61 A/G, M470V, 2694 T/G, 3061-65 C/A, 4002 A/G, 4521 G/A, IVS8 TG10, IVS8 TG12) were classified as non-CF-causing alleles on the basis of their frequency. The remaining mutations have a cumulative frequency far exceeding q; therefore, most of them cannot be CF-causing mutations. This is the first random survey capable of detecting all the polymorphisms of the coding sequence of a gene.
Comments [show]
None has been submitted yet.
No. Sentence Comment
80 Many (13 out of 20) of the missense mutations change highly conserved (5/5 species analyzed) amino acid residues (R75Q, G85E, I148T, I506V, R668C, G622D, L997F, I1027T, F1052V, L1096R, I1131V, R1162L, N1303K); others affect amino acid residues conserved in 4/5 species (K68 E, R170H, M470V, V562L, S1235R), or in 3/5 species (R31C and G576A; Tucker et al. 1992).
X
ABCC7 p.Arg170His 10746558:80:277
status: NEW96 Moreover, 1525-61 A/G (i 9) and 3601-65 C/A (i 18) were detected by SSCA performed in the Spanish sample only (14/82 and 12/80, respectively); these mutations were not identifiable by DGGE as used in the present work The totals are: a378; b362; c380; d356 genes eCertainly a CF-causing mutations fThe most common allele at this site is (TTGA)7 gThe most common allele at this site is T7 hThe frequency shown is that of the M allele Mutation Position North-Central Southern Spain Total East Italy Italy France 82 genes 100 genes 100 genes 100 genes 382 genes % 125 G/C 5`UTR 1 2 7 3 13 3.4 R31C 2 1 1 1 0 3 0.8 K68E 3 1 0 0 0 1 0.3 R75Q 3 1 1 2 0 4 1.0 G85Ee 3 0 1 0 0 1 0.3 406-6 T/C i 3 0 0 1 0 1 0.3 I148T 4 1 0 0 0 1 0.3 621+3 A/G i 4 0 1 0 0 1 0.3 R170H 5 1 0 0 0 1 0.3 875+40 A/G i 6a 11 5 5 2 23 6.0 (TTGA)6 f i 6a 17 11 7 13 48 12.6 1341+28 C/T i 8 1 0 0 0 1 0.3 IVS8-6g T5 i 8 8 2 4 3/78 17a 4.5 IVS8-6g T9 i 8 10 7 10 11/78 38a 10.0 M470Vh 10 42 30 39 27 138 36.1 I506V 10 1 0 0 0 1 0.3 ∆F508e 10 1 0 2 0 3 0.8 1716 G/A 10 2 1 0 5 8 2.1 V562L 12 0 0 1 0 1 0.3 G576A 12 1 0/80 1 0 2b 0.6 G622D 13 0 0/80 1 0 1b 0.3 R668C 13 1 0/80 1 0 2b 0.6 2082 C/T 13 1 0/80 0 0 1b 0.3 2377 C/T 13 0 0/80 0 1 1b 0.3 2694 T/G i 14a 33 23 33 14/80 103c 27.1 2752-15 C/G i 14b 0 3 0 0 3 0.8 3041-71 G/C i 15 0 1 2 0 3 0.8 L997F 17a 0 2 0 0 2 0.5 I1027T 17a 1 0 0 0 1 0.3 F1052V 17b 1 0 0 0 1 0.3 L1096R 17b 0 0 1 0 1 0.3 3417 A/T 17b 1 0 1 0 2 0.5 I1131V 18 0 1 0 0 1 0.3 R1162L 19 0 1 0 0 1 0.3 3690 A/G 19 0 0 0 1/80 1c 0.3 S1235R 19 1 0 0 0 1 0.3 4002 A/G 20 2 3 3 3/80 11c 2.9 4005+28insA i 20 0 1 0 0 0.3 4029 A/G 21 1 0 0 0 1 0.3 N1303Ke 21 1 0 0 0 1 0.3 4404 C/T 24 1 0 1 0 2 0.5 4521 G/A 24 21 16 14/80 15/76 66d 18.5 Total 165 113 137 98 513 encountered in the present survey are possible.
X
ABCC7 p.Arg170His 10746558:96:752
status: NEW[hide] Different CFTR mutational spectrum in alcoholic an... Pancreas. 2004 May;28(4):374-9. Casals T, Aparisi L, Martinez-Costa C, Gimenez J, Ramos MD, Mora J, Diaz J, Boadas J, Estivill X, Farre A
Different CFTR mutational spectrum in alcoholic and idiopathic chronic pancreatitis?
Pancreas. 2004 May;28(4):374-9., [PMID:15097853]
Abstract [show]
OBJECTIVE: Cystic fibrosis transmembrane conductance regulator (CFTR) mutations are responsible for cystic fibrosis (CF) and have been postulated as a predisposing risk factor to chronic pancreatitis (CP), but controversial results demand additional support. We have therefore investigated the role of the CFTR gene in a cohort of 68 CP patients. METHODS: We have performed the CFTR gene analysis using 2 screening techniques. Fragments showing abnormal migration patterns were characterized by sequencing. Patients were classified in alcoholic (ACP) (n = 37) and idiopathic (ICP) (n = 31) chronic pancreatitis. Clinical features of CP and CF were evaluated. RESULTS: Sixteen mutations/variants were identified in 27 patients (40%), most of them (35%) presenting a single CFTR mutant gene. The 1716G/A variant showed the highest frequency accounting for 22% in ICP and 5% in ACP, in contrast with other more common mutations such as F508del found in 8% of ACP and the 5T variant identified in 7% of patients. Acute pancreatitis, abdominal pain, tobacco, pancreatic calcifications, and pancreatic pseudocysts showed significant higher values in ACP than ICP patients. No significant differences were found between patients with and without CFTR mutations. CONCLUSIONS: Apart from reinforcing previous findings our data highlight the increased susceptibility of CFTR heterozygous to developing CP. Heterozygosity, combined with other factors, places these individuals at greater risk.
Comments [show]
None has been submitted yet.
No. Sentence Comment
63 Time Years BMI Alcohol Alcohol Time Years Tobacco Pancreatic Features Hepatobiliary Disease CFTR Genotype Sweat Test mmol/L FEV1/FVC % Predicted Male Fertility Alcoholic Chronic Pancreatitis (n = 15) 1 M/52 15 24.5 110g/d 27 yes AP, P, Ps, DM, PI Chronic hepatitisa F508del/S1235R 18 105/107 yes 2 M/72 15 23.4 85g/d 22 yes AP, P, C, PS no F508del/1716G/A 72 90/104 yes 3 M/53 10 21.9 135g/d 20 yes P, C, DM, PI no F508del/- 54 71/89 yes 4 M/64 18 20.7 250g/d 27 yes AP, P, C, Ps, DM, PI cirrhosis, lithiasis W1282X/- 68 71/78 unproved 5 M/44 13 22.0 95g/d 6 yes AP, P, C, Ps, DM, PI lithiasis R170C/- 16 105/111 yes 6 M/62 12 22.1 >60g/d >5 yes AP, P, C, Ps, DM, PS no R258G/- 82 73/82 yes 7 M/38 9 18.0 210g/d 15 yes AP, P, C, Ps, PS no M281T/- 62 132/126 yes 8 M/40 11 - >60g/d >5 yes AP, P, C, Ps, PS lithiasis R297Q/- 46 103/99 yes 9 M/42 2 21.4 150g/d 20 yes AP, P, C, Ps, PS no 1716G/A/- 19 93/102 yes 10 M/44 3 22.2 95g/d 22 yes AP, P, DM, PS no R668C/- 58 105/102 yes 11 M/59 6 21.8 90g/d 18 yes PS lithiasis L997F/- 85 69/84 nd 12 M/72 16 - >60g/d >5 no P, C, DM, PI lithiasis R1162L/- - - yes 13 M/35 8 21.0 90g/d 7 yes AP, P, C, PS no 5T-12TG-V470/- 13 106/114 unproved 14 M/60 14 28.0 80g/d 20 no AP, P, C, Ps, DM, PI no 5T-11TG/- 28 80/77 yes 15 M/65 12 24.4 100g/d 23 yes AP, P, C, DM, PS no 5T-11TG/ 40 86/110 yes Idiopathic Chronic Pancreatitis (n = 12) 16 M/21 5 - no - yes AP, P, PS no 1716G/A/R170H 40 normal yes 17 M/59 4 24.2 no - no PS chronic hepatitisb 1716G/A/- 40 146/128 yes 18 M/63 14 21.4 no - no DM, PI no 1716G/A/- 34 144/126 yes 19 M/70 18 19.9 no - yes AP, P, DM, PI chronic hepatitisa 1716G/A/- 60 36/47 yes 20 M/65 1 27.7 no - yes P, Ps, DM, PI no 1716G/A/- 38 79/78 yes 21 M/76 8 24.1 no - no AP, P, DM, PS no 1716G/A/- 60 81/109 yes 22 M/25 2 25.0 no - yes AP, P, PS no 1716G/A/- 48 94/86 nd 23 F/42 10 22.6 no - yes P, C, PS lithiasis P205S/- 72 111/109 - 24 F/81 21 34.6 no - no P, C, DM, PI lithiasis D443Y+G+R*/- 42 121/108 - 25 F/72 8 23.3 no - yes AP, C, PS no L997F/- 40 100/93 - 26 M/9 2 19.2 no - no AP, P, PS no 5T-11TG/- 30 101/110 nd 27 M/63 6 - no - no C, DM, PI cirrhosis 5T-11TG/- - - yes a C virus hepatitis.
X
ABCC7 p.Arg170His 15097853:63:1413
status: NEW[hide] A large-scale study of the random variability of a... Eur J Hum Genet. 2005 Feb;13(2):184-92. Modiano G, Bombieri C, Ciminelli BM, Belpinati F, Giorgi S, Georges M, Scotet V, Pompei F, Ciccacci C, Guittard C, Audrezet MP, Begnini A, Toepfer M, Macek M, Ferec C, Claustres M, Pignatti PF
A large-scale study of the random variability of a coding sequence: a study on the CFTR gene.
Eur J Hum Genet. 2005 Feb;13(2):184-92., [PMID:15536480]
Abstract [show]
Coding single nucleotide substitutions (cSNSs) have been studied on hundreds of genes using small samples (n(g) approximately 100-150 genes). In the present investigation, a large random European population sample (average n(g) approximately 1500) was studied for a single gene, the CFTR (Cystic Fibrosis Transmembrane conductance Regulator). The nonsynonymous (NS) substitutions exhibited, in accordance with previous reports, a mean probability of being polymorphic (q > 0.005), much lower than that of the synonymous (S) substitutions, but they showed a similar rate of subpolymorphic (q < 0.005) variability. This indicates that, in autosomal genes that may have harmful recessive alleles (nonduplicated genes with important functions), genetic drift overwhelms selection in the subpolymorphic range of variability, making disadvantageous alleles behave as neutral. These results imply that the majority of the subpolymorphic nonsynonymous alleles of these genes are selectively negative or even pathogenic.
Comments [show]
None has been submitted yet.
No. Sentence Comment
33 In the Tajima`s test,19 the null hypothesis of neutrality is rejected if a statistically significant difference between p Common and rare nonsynonymous and synonymous cSNSs G Modiano et al European Journal of Human Genetics Table 1 List of the 61 cSNSsa encountered in the present survey The random samples of genes (and the technique utilized) cSNS variants found NE Italy (DGGE) Central Italy (DGGE) Southern France (DGGE) Northern France (DHPLC) Spain (SSCA) Czechia (DGGE) Hb  104 Exon Exon Length (bp) Ref. no. SNS SASc 1st 100d 2nd 500 1st 100d 2nde 1st 100d 2nd 500 1st 100 2nde 82d 72 Abs. Freq. Total sample size q  104 se  104 NSf Sf 1g 53 0 0 0 0 0/452 0 924 2 111 1 223C4T R31C 1 1 1/500 1 1 0 0/450 0 5 (11) 1 932 (2 432) 45.23 13.61 90 2 224G4T R31L 0 0 0/500 0 0 0 1/450 0 1 1 932 5.17 5.17 10 3 257C4T S42F 0 0 1/500 0 0 0 0/450 0 1 1 932 5.17 5.17 10 3 109 4 334A4G K68E 1 0 0 0/498 0 0 0 0/452 0 0 1 2 504 3.99 3.99 8 5 352C4T R74W 0 0 0 0/498 0 0 0 1/452 0 0 1 2 504 3.99 3.99 8 6 356G4A R75Q 1 7 1 7/498 2 9 2 9/452 0 2 40 (40) 2 504 (2 544) 157.23 24.66 310 7 386G4A G85E 0 0 1 1/498 0 0 0 0/452 0 0 2 2 504 7.99 5.65 16 4 216 8 482G4A R117H 0 0 0 0/292 0 2 0 1/456 0 0 3 2 302 13.03 7.52 26 9 528T4G I132M 0 0 0 0/292 0 0 0 1/456 0 0 1 2 302 4.34 4.34 8 10 575T4C I148T 1 2 0 1/292 0 0 0 1/456 0 1 6 2 302 26.06 10.63 52 5 90 11 640C4T R170C 0 0 0 0/6 0 0 1/448 0 1 1 436 6.96 6.96 14 12 641G4A R170H 1 1 0 0/6 0 0 2/448 0 4 (4) 1 436 (1 930) 20.73 10.35 41 6a 164 0 0 0/6 0 0 0/432 0 0 992 6b 126 0 0 0/6 0 0 0/454 0 942 7 247 0 0 0/6 0 0 0/796 0 1 284 8 93 13 1281G4A L383 0 0 0 0/6 0 0 1/456 0 0 1 1 516 6.60 6.60 13 9 183 14 1402G4A G424S 0 0 0/6 0 0 1/454 0 1 940 10.64 10.64 21 15 1459G4T D443Y 0 0 0/6 0 0 1/454 0 1 940 10.64 10.64 21 10 192 16 1540A4G M470Vh 42 197 30 37/96 39 199 (i) (i) 27 571(736) 1 484 (1 912) 3849.37 111.28 4 735 17 1598C4A S489X 0 0 0 0/96 0 0 0 1/796 0 1 2 374 4.21 4.21 8 18 1648A4G I506V 1 0 0 0/96 0 0 0 0/796 0 1 2 374 4.21 4.21 8 19 1655T4G F508C 0 1 0 0/96 0 0 0 1/796 0 2 2 038 8.42 5.96 17 20 1716G4A Q528 2 16 1 0/96 0 19 i I 5 43 (58) 1 478 (2 024) 286.56 37.08 557 11 95 21 1756G4T G542X 0 2 0 0/134 0 0 0/796 0 0 2 1 984 10.08 7.12 20 22 1764T4G G544 0 0 0 0/134 0 0 1/796 0 0 1 1 984 5.04 5.04 10 23 1784G4A G551D 0 0 0 0/134 0 0 1/796 0 0 1 1 984 5.04 5.04 10 12 87 24 1816G4A V562I 0 0 0 0 1 0 0/450 0 0 1 (1) 2 004 (2 504) 3.99 3.99 8 25 1816G4C V562L 0 0 0 1 0 0 1/450 0 0 2 (3) 2 004 (2 504) 11.98 6.91 24 26 1859G4C G576A 1 2 0 1 11 0 8/450 0 0 23 (27) 2 004 (2 538) 106.38 20.36 213 13 724j 449 27 1997G4A G622D 0 0 0/80 0/96 1 0 0 0/444 0 1 2 002 5.00 5.00 10 28 2082C4T F650 1 0 0/80 0/20 0 0 0 0/444 0 1 (1) 1 926 (2 412) 4.15 4.15 8 29 2134C4T R668C 1 2 0/80 0/96 1 11 0 12/444 0 27(32) 2 002 (2 558) 125.10 21.98 247 275 30 2377C4T L748 0 0 0/6 0 1 1 388 25.77 25.77 52 14a 129 31 2670G4A W846X 0 0 0/6 0 1 0/452 0/80 0 1 1 010 9.90 9.90 20 32 2694T4G T854 33 23 0/6 33 38 149/452 14/80 11 301 1 010 2980.20 143.92 4 184 33 2695G4A V855I 0 0 0/6 0 0 1/452 0/80 0 1 1 010 9.90 9.90 20 14b 38 0 0 0 0/520 0 0 0 0/446 0 2 448 15 251 34 2816G4C S895T 0 0 0/6 0 0 2/436 0 0 2 996 20.08 14.18 40 35 2831A4C N900T 0 0 0/6 0 0 1/436 0 0 1 996 10.04 10.04 20 36 2988G4C M952I 0 0 0/6 0 0 1/436 0 0 1 996 10.04 10.04 20 37 3030G4A T966 (2)k (1)k 0 6/436 0 6 (25)k 618 (1814)k 137.82 27.37 272 38 3032T4C L967S 0 0 0/6 0 0 1/436 0 0 1 996 10.04 10.04 20 16 80 0 0 0/498 0 0 0/450 0 0 1 502 17a 151 39 3123G4C L997F 0 2 2 1/494 0 7 1 4/454 0 0 17 2 502 67.95 16.42 135 40 3157G4A A1009T 0 2 0 0/494 0 0 0 0/454 0 0 2 2 502 7.99 5.65 16 41 3212T4C I1027T 1 0 0 0/494 0 0 0 0/454 0 0 1 2 502 4.00 4.00 8 17b 228 42 3286T4G F1052V 1 1 0 1/194 0 0 0 0/452 0 0 3 (3) 2 200 (2 240) 13.39 7.73 27 43 3337G4A G1069R 0 1 0 0/194 0 0 0 0/452 0 0 1 2 200 4.55 4.55 9 CommonandrarenonsynonymousandsynonymouscSNSs GModianoetal 186 EuropeanJournalofHumanGenetics 44 3345G4T Q1071H 0 0 0 0/194 0 1 0 0/452 0 0 1 2 200 4.55 4.55 9 45 3417A4T T1995 1 3 0 0/194 1 1 0 0/452 0 0 6 (8) 2 200 (2 506) 31.92 11.27 64 46 3419T4G L1096R 0 0 0 0/194 1 0 0 0/452 0 0 1 2 200 4.55 4.55 9 47 3477C4A T1115 0 0 0 0/194 0 0 0 1/452 0 0 1 2 200 4.55 4.55 9 18 101 48 3523A4G I1131V 0 0 1 0/10 0 0 0/448 0 0 1 (2) 1 512 (1 908) 10.48 7.07 21 49 3586G4C D1152H 0 0 0 0/10 0 0 1/448 0 0 1 1 512 6.61 6.61 13 19 249 50 3617G4T R1162L 0 0 1 1/494 0 0/260 0 0/454 0 0 2 2 262 8.84 6.25 18 51 3690A4G Q1186 0 0 0 0/494 0 0/260 0 0/454 1 0 1 2 262 4.42 4.42 9 52 3813A4G L1227 0 1 0 0/494 0 0/260 0 0/454 0 0 1 2 262 4.42 4.42 9 53 3837T4G S1235R 1 1 0 1/494 0 4/260 0 7/454 0 1 15 (15) 2 262 (2 310) 69.94 16.71 140 20 156 54 4002A4G P1290 2 3 0/6 3 5 18/454 3/80 2 36 1 012 357.73 58.22 690 21 90 55 4009G4A V1293I 0 0 0/6 0 0/300 0 1/456 0 0 1 1 316 7.60 7.60 15 56 4029A4G T1299 1 0 0/6 0 1/300 0 1/456 0 0 3 (8) 1 316 (2 330) 34.33 12.12 69 57 4041C4G N1303K 1 0 0/6 0 0/300 0 0/456 0 0 1 1 316 7.60 7.60 15 58 4085T4C V1318A 0 0 0/6 0 0/300 0 1/456 0 0 1 1 316 7.60 7.60 15 22 173 0 0 0/18 0 0 0/450 0 0 1 022 23 106 0 0 0 0/6 0 0 0/448 0 1 436 24l 198+3 59 4404C4T Y1424 1 0 0/6 1 2 5/420 0 2 11 (32) 980 (2 516) 127.19 22.34 251 60m 4521G4A Q1463 (21) (16) (3/32) (14/80) (30) (94/420) 15/76 (17) 15 (227) 76 (1052) 2142.86 131.07 3 367 61 4563T4C D1477 0 0 0/6 0 1 0/420 0 0 1 980 10.20 10.20 20 Totals 6 525 9 584 16 109 The bracketed figures include also the RFLP analysis data (see Materials and methods); the NE Italy, Central Italy, Southern and Northern France are each subdivided into two samples where the 1st is made up of 100 genes.
X
ABCC7 p.Arg170His 15536480:33:1437
status: NEW[hide] Extensive sequencing of the CFTR gene: lessons lea... Hum Genet. 2005 Dec;118(3-4):331-8. Epub 2005 Sep 28. McGinniss MJ, Chen C, Redman JB, Buller A, Quan F, Peng M, Giusti R, Hantash FM, Huang D, Sun W, Strom CM
Extensive sequencing of the CFTR gene: lessons learned from the first 157 patient samples.
Hum Genet. 2005 Dec;118(3-4):331-8. Epub 2005 Sep 28., [PMID:16189704]
Abstract [show]
Cystic fibrosis (CF) is one of the most common monogenic diseases affecting Caucasians and has an incidence of approximately 1:3,300 births. Currently recommended screening panels for mutations in the responsible gene (CF transmembrane regulator gene, CFTR) do not detect all disease-associated mutations. Our laboratory offers extensive sequencing of the CFTR (ABCC7) gene (including the promoter, all exons and splice junction sites, and regions of selected introns) as a clinical test to detect mutations which are not found with conventional screening. The objective of this report is to summarize the findings of extensive CFTR sequencing from our first 157 consecutive patient samples. In most patients with classic CF symptoms (18/24, 75%), extensive CFTR sequencing confirmed the diagnosis by finding two disease-associated mutations. In contrast, only 5 of 75 (7%) patients with atypical CF had been identified with two CFTR mutations. A diagnosis of CF was confirmed in 10 of 17 (58%) newborns with either positive sweat chloride readings or positive immunoreactive trypsinogen (IRT) screen results. We ascertained ten novel sequence variants that are potentially disease-associated: two deletions (c.1641AG>T, c.2949_2853delTACTC), seven missense mutations (p.S158T, p.G451V, p.K481E, p.C491S, p.H949L, p.T1036N, p.F1099L), and one complex allele ([p.356_A357del; p.358I]). We ascertained three other apparently novel complex alleles. Finally, several patients were found to carry partial CFTR gene deletions. In summary, extensive CFTR gene sequencing can detect rare mutations which are not found with other screening and diagnostic tests, and can thus establish a definitive diagnosis in symptomatic patients with previously negative results. This enables carrier detection and prenatal diagnosis in additional family members.
Comments [show]
None has been submitted yet.
No. Sentence Comment
72 The two deletions Table 2 Atypical CF or nonclassic patients in whom extensive sequencing revealed two CFTR mutations Patient Genotype Phenotype Sex Age (years) Sweat chloride concentration (mmol/l) 1 p.S912L/DF508 Chronic lung and sinus disease F 52 Not done 2 p.R1070W/p.N1303K Recurrent respiratory infections F 4.5 2X intermediate 3 p.G551D/c.2789+2 InsA Pancreatic insufficiency, little lung involvement F 50 92, 96 4 c.3849+10kb C>T/p.L732X Failure to thrive, chronic cough, chronic sinusitis M 5.5 70,73 5 p.W1282X/p.R170H Chronic pancreatitis, CBVAD M 44 Borderline (c.1641 AG>T, and c.2949-2953 del TACTC) are expected to be severe disease-associated mutations, since they change the CFTR reading frame; the two patients harboring these novel deletions had a diagnosis of CF with elevated sweat chloride levels and carried a second, previously described, CF mutation.
X
ABCC7 p.Arg170His 16189704:72:524
status: NEW[hide] The cystic fibrosis transmembrane conductance regu... Hum Genet. 2005 Dec;118(3-4):372-81. Epub 2005 Sep 29. Bishop MD, Freedman SD, Zielenski J, Ahmed N, Dupuis A, Martin S, Ellis L, Shea J, Hopper I, Corey M, Kortan P, Haber G, Ross C, Tzountzouris J, Steele L, Ray PN, Tsui LC, Durie PR
The cystic fibrosis transmembrane conductance regulator gene and ion channel function in patients with idiopathic pancreatitis.
Hum Genet. 2005 Dec;118(3-4):372-81. Epub 2005 Sep 29., [PMID:16193325]
Abstract [show]
Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations are associated with cystic fibrosis (CF)-related monosymptomatic conditions, including idiopathic pancreatitis. We evaluated prospectively enrolled patients who had idiopathic recurrent acute pancreatitis or idiopathic chronic pancreatitis, healthy controls, CF heterozygotes, and CF patients (pancreatic insufficient or sufficient) for evidence of CFTR gene mutations and abnormalities of ion transport by sweat chloride and nasal potential difference testing. DNA samples from anonymous blood donors were controls for genotyping. At least one CFTR mutation or variant was carried in 18 of 40 patients (45%) with idiopathic chronic pancreatitis and in 6 of 16 patients (38%) with idiopathic recurrent acute pancreatitis but in only 11 of the 50 controls (22%, P=0.005). Most identified mutations were rare and would not be identified in routine genetic screening. CFTR mutations were identified on both alleles in six patient (11%). Ion transport measurements in patients with pancreatitis showed a wide range of results, from the values in patients with classically diagnosed CF to those in the obligate heterozygotes and healthy controls. In general, ion channel measurements correlated with the number and severity of CFTR mutations. Twelve of 56 patients with pancreatitis (21%) fulfilled current clinical criteria for the diagnosis of CF, but CFTR genotyping alone confirmed the diagnosis in only two of these patients. We concluded that extensive genotyping and ion channel testing are useful to confirm or exclude the diagnosis of CF in the majority of patients with idiopathic pancreatitis.
Comments [show]
None has been submitted yet.
No. Sentence Comment
85 Sex Type of pancreatitis Age, years CFTR genotype TG repeata Sweat chloride, mmol/lb NTPD DClÀ free+ Iso, mVc Normal Borderline Abnormal Normal Abnormal 1 F Chronic 19 F508deld /L206W 63 Not done 2 M Acute 16 F508deld /R117H(7T)d 10 60 5.0 3 F Chronic 43 F508deld /L967S 46 À2.5 4 F Acute 16 W1282Xd /5T 12 38 1.0 5 F Acute 10 F508deld /D1152H 33 17.0 6 F Chronic 19 5T/5T 11/11 6 15.0 7 F Chronic 33 F508deld /À 69 7.4 8 M Chronic 25 F508deld /À 54 7.0 9 M Chronic 15 F508deld /À 33 14.0 10 F Chronic 33 F508deld /À 26 7.0 11 M Chronic 12 F508deld /À 24 6.0 12 M Chronic 21 2183AA fi G/À 124 Not done 13 F Acute 19 5T/À 11 71 11.0 14 M Chronic 71 5T/À 11 39 19.0 15 F Chronic 38 5T/À 11 20 30.0 16 F Chronic 21 5T/À 11 18 Not done 17 F Chronic 17 5T/À 11 17 Not done 18 F Chronic 26 5T/À No DNA 12 38.0 19 F Chronic 45 5T/À 11 5 34.0 20 F Chronic 40 R75Q/À 32 16.0 21 F Chronic 11 S1235R/À 31 46.0 22 F Acute 1 R170H/À 19 Not done 23 F Acute 14 1716G fi A/À 14 26.0 24 F Chronic 23 1716G fi A/À 12 12.0 25 M Acute 8 À/À 51 15.0 26 M Chronic 67 À/À 46 11.0 27 M Acute 13 À/À 44 36.0 28 F Acute 28 À/À 35 3.0 29 F Chronic 21 À/À 22 6.0 TG12.
X
ABCC7 p.Arg170His 16193325:85:997
status: NEW[hide] Haplotype block structure study of the CFTR gene. ... Eur J Hum Genet. 2006 Jan;14(1):85-93. Pompei F, Ciminelli BM, Bombieri C, Ciccacci C, Koudova M, Giorgi S, Belpinati F, Begnini A, Cerny M, Des Georges M, Claustres M, Ferec C, Macek M Jr, Modiano G, Pignatti PF
Haplotype block structure study of the CFTR gene. Most variants are associated with the M470 allele in several European populations.
Eur J Hum Genet. 2006 Jan;14(1):85-93., [PMID:16251901]
Abstract [show]
An average of about 1700 CFTR (cystic fibrosis transmembrane conductance regulator) alleles from normal individuals from different European populations were extensively screened for DNA sequence variation. A total of 80 variants were observed: 61 coding SNSs (results already published), 13 noncoding SNSs, three STRs, two short deletions, and one nucleotide insertion. Eight DNA variants were classified as non-CF causing due to their high frequency of occurrence. Through this survey the CFTR has become the most exhaustively studied gene for its coding sequence variability and, though to a lesser extent, for its noncoding sequence variability as well. Interestingly, most variation was associated with the M470 allele, while the V470 allele showed an 'extended haplotype homozygosity' (EHH). These findings make us suggest a role for selection acting either on the M470V itself or through an hitchhiking mechanism involving a second site. The possible ancient origin of the V allele in an 'out of Africa' time frame is discussed.
Comments [show]
None has been submitted yet.
No. Sentence Comment
30 The T2A rate was much lower than 1 Frequencies of the CFTR variants within the M or the V alleles exon or intron VARIANT SITES in the M genes (MM subjects) in the V genes (VV subjects) A 5' UTR 125 g/c 8/144 (0.056) 3/356 (0.008) -80 1 2 R31C 5/226 (0.004) 1/576 (0.002) -56 in M genes in V genes 6 2 R75Q 1/226 (0.004) 15/576 (0.026) -51 M V (ttga)n 0.461 0.017 7 3 G85E 0/226 (0) 1/576 (0.002) -51 2.214 0.362 (tg)n 0.616 0.114 B i 3 406-6 t/c 0/226 (0) 6/576 (0.010) -29 (t)n 0.499 0.036 8 4 R117H 2/226 (0.009) 0/576 (0) -29 10 4 I148T 3/224 (0.013) 0/576 (0) -29 C i 4 621+3 a/g 1/224 (0.004) 0/576 (0) -29 12 5 R170H 1/158 (0.006) 0/402 (0) -26 D i 6a 875+40 a/g 6/36 (0.167)c 0/118 (0)c -25 i 6b (ttga)6 13/36 (0.361) 1/118 (0.008) -23 E i 6b 1001+11 c/t 5/60 (0.083) 0/166 (0) -23 F i 8 1341+28 c/t 1/152 (0.007) 0/464 (0) -18 i 8 (tg)10 39/76 (0.513) 5/218 (0.023) -11 i 8 (tg)11 21/76 (0.276) 205/218 (0.940) -11 i 8 (tg)12 16/76 (0.211) 8/218 (0.037) -11 i 8 t5 4/76 (0.053) 2/218 (0.009) -11 i 8 t7 48/76 (0.632) 214/218 (0.982) -11 i 8 t9 24/76 (0.316) 2/218 (0.009) -11 16 10 M470V H ex 10 F508del 3/226 (0.013) 0/572 (0) 0 19 10 F508C 0/226 (0) 1/572 (0.002) 0 20 10 1716g/a 15/226 (0.066) 0/572 (0) 0 21 11 G542X 1/158 (0.006) 0/400 (0) +28 24 12 V562I 1/226 (0.004) 0/576 (0) +30 25 12 V562L 1/226 (0.004) 0/576 (0) +30 26 12 G576A 3/226 (0.013) 0/576 (0) +30 28 13 2082c/t 1/104 (0.010) 0/226 (0) +32 29 13 R668C 3/224 (0.013) 0/562 (0) +32 32 14a 2694t/g 45/70 (0.643) 9/208 (0.043) +35 I i 14a 2752-15 c/g 0/226 (0) 5/576 (0.009) +44 37 15 3030g/a 1/158 (0.006) 7/402 (0.017) +44 O i 15 3041-71 g/c 5/226 (0.022) 0/576 (0) +47 39 17a L997F 1/226 (0.004) 4/576 (0.007) +51 40 17a A1009T 0/226 (0) 1/572 (0.002) +51 42 17b F1052V 1/226 (0.004) 0/572 (0) +52 43 17b G1069R 1/226 (0.004) 0/572 (0) +52 44 17b Q1071H 1/226 (0.004) 0/572 (0) +52 45 17b 3417a/t 0/226 (0) 4/572 (0.007) +52 46 17b L1096R 1/226 (0.004) 0/572 (0) +52 52 19 3813a/g 0/118 (0) 1/484 (0.002) +68 53 19 S1235R 3/100 (0.030) 0/294 (0) +68 54 20 4002a/g 5/56 (0.089) 1/168 (0.006) +83 q in the M alleles q in the V alleles 56 21 4029a/g 0/194 (0) 3/506 (0.006) +93 57 21 N1303K 1/92 (0.011) 0/272 (0) +93 59 24 4404c/t 3/226 (0.013) 14/576 (0.024) +107 60 24 4521g/a 21/56 (0.375) 2/172 (0.012) +107 "slow evolution" markers "fast evolution" markers (i.e. STRs) H is the sum of the degrees of heterozygosity of all the markers Ref.No.a ABSOLUTE AND RELATIVE FREQUENCIES distance from the M470V siteb (Kb) H associated with the….
X
ABCC7 p.Arg170His 16251901:30:619
status: NEW[hide] Detection of cystic fibrosis transmembrane conduct... Hum Reprod. 2007 May;22(5):1285-91. Epub 2007 Feb 28. Ratbi I, Legendre M, Niel F, Martin J, Soufir JC, Izard V, Costes B, Costa C, Goossens M, Girodon E
Detection of cystic fibrosis transmembrane conductance regulator (CFTR) gene rearrangements enriches the mutation spectrum in congenital bilateral absence of the vas deferens and impacts on genetic counselling.
Hum Reprod. 2007 May;22(5):1285-91. Epub 2007 Feb 28., [PMID:17329263]
Abstract [show]
BACKGROUND: Mutations in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene have been widely detected in infertile men with congenital bilateral absence of the vas deferens (CBAVD). Despite extensive analysis of the CFTR gene using varied screening methods, a number of cases remain unsolved and could be attributable to the presence of large gene rearrangements, as recently shown for CF patients. METHODS: We carried out a complete CFTR gene study in a group of 222 CBAVD patients with strict diagnosis criteria and without renal anomaly, and searched for rearrangements using a semi-quantitative assay in a subgroup of 61 patients. RESULTS: The overall mutation detection rate was 87.8%, and 82% of patients carried two mutations. Ten out of the 99 different mutations accounted for 74.6% of identified alleles. Four large rearrangements were found in patients who already carried a mild mutation: two known partial deletions (exons 17a to 18 and 22 to 23), a complete deletion and a new partial duplication (exons 11 to 13). The rearrangements accounted for 7% of the previously unknown alleles and 1% of all identified alleles. CONCLUSIONS: Screening for rearrangements should be part of comprehensive CFTR gene studies in CBAVD patients and may have impacts on genetic counselling for the patients and their families.
Comments [show]
None has been submitted yet.
No. Sentence Comment
88 2 [R170H] þ [?]
X
ABCC7 p.Arg170His 17329263:88:3
status: NEW[hide] Best practice guidelines for molecular genetic dia... Eur J Hum Genet. 2009 Jan;17(1):51-65. Epub 2008 Aug 6. Dequeker E, Stuhrmann M, Morris MA, Casals T, Castellani C, Claustres M, Cuppens H, des Georges M, Ferec C, Macek M, Pignatti PF, Scheffer H, Schwartz M, Witt M, Schwarz M, Girodon E
Best practice guidelines for molecular genetic diagnosis of cystic fibrosis and CFTR-related disorders--updated European recommendations.
Eur J Hum Genet. 2009 Jan;17(1):51-65. Epub 2008 Aug 6., [PMID:18685558]
Abstract [show]
The increasing number of laboratories offering molecular genetic analysis of the CFTR gene and the growing use of commercial kits strengthen the need for an update of previous best practice guidelines (published in 2000). The importance of organizing regional or national laboratory networks, to provide both primary and comprehensive CFTR mutation screening, is stressed. Current guidelines focus on strategies for dealing with increasingly complex situations of CFTR testing. Diagnostic flow charts now include testing in CFTR-related disorders and in fetal bowel anomalies. Emphasis is also placed on the need to consider ethnic or geographic origins of patients and individuals, on basic principles of risk calculation and on the importance of providing accurate laboratory reports. Finally, classification of CFTR mutations is reviewed, with regard to their relevance to pathogenicity and to genetic counselling.
Comments [show]
None has been submitted yet.
No. Sentence Comment
144 A (T)5 variant can either be associated with (TG)11, (TG)12, (TG)13, and rarely (TG)15 repeats.74 When (T)5 is found in diagnostic testing, for example, for CBAVD or atypical presentation, determination of Table 4 Classification of CFTR mutations with regard to their potential for causing disease Mutation group Examples CF-causing F508del Mainly nonsense, frameshift, splicing (invariant dinucleotide): G542X, R553X, W1282X, 2183AA4G, 3659delC, 1717-1G4A, 3120+1G4A Missense that severely affects CFTR synthesis or function: G551D, N1303K, R347P 2789+5G4A, 3849+10kbC4T, 3272-26A4G, L206Wa , D1152Ha , (TG)13(T)5a CFTR-related disorders associated L206Wa , D1152Ha , (TG)13(T)5a [R117H;(T)7], (TG)12(T)5, L997F, V562I, [R668C;G576A;D443Y], [R74W;D1270N] (TG)11(T)5b , S1235Rb No clinical consequences 875+40A4G, M470V (1540A4G), I506V (1648A4G), F508C (1655T4G), 1716G4A, 2694T4G, 4002A4G, 2752-15G4C (TG)11(T)5b , S1235Rb Unproven or uncertain clinical relevance Mainly missense mutations G622D, R170H, V938G, I125T Putative splice mutations: 406-6T4C, 2752-26A4G, 3601-17T4C Only a fraction of mutations and patients have been characterized in detail and, with the exception of frequent mutations, only small numbers of patients have been available for the study of most mutations.
X
ABCC7 p.Arg170His 18685558:144:999
status: NEW[hide] A novel computational and structural analysis of n... Genomic Med. 2008 Jan;2(1-2):23-32. Epub 2008 May 14. George Priya Doss C, Rajasekaran R, Sudandiradoss C, Ramanathan K, Purohit R, Sethumadhavan R
A novel computational and structural analysis of nsSNPs in CFTR gene.
Genomic Med. 2008 Jan;2(1-2):23-32. Epub 2008 May 14., [PMID:18716917]
Abstract [show]
Single Nucleotide Polymorphisms (SNPs) are being intensively studied to understand the biological basis of complex traits and diseases. The Genetics of human phenotype variation could be understood by knowing the functions of SNPs. In this study using computational methods, we analyzed the genetic variations that can alter the expression and function of the CFTR gene responsible candidate for causing cystic fibrosis. We applied an evolutionary perspective to screen the SNPs using a sequence homology-based SIFT tool, which suggested that 17 nsSNPs (44%) were found to be deleterious. The structure-based approach PolyPhen server suggested that 26 nsSNPS (66%) may disrupt protein function and structure. The PupaSuite tool predicted the phenotypic effect of SNPs on the structure and function of the affected protein. Structure analysis was carried out with the major mutation that occurred in the native protein coded by CFTR gene, and which is at amino acid position F508C for nsSNP with id (rs1800093). The amino acid residues in the native and mutant modeled protein were further analyzed for solvent accessibility, secondary structure and stabilizing residues to check the stability of the proteins. The SNPs were further subjected to iHAP analysis to identify htSNPs, and we report potential candidates for future studies on CFTR mutations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
125 The nsSNPs which were predicted to be Table 1 List of nsSNPs that were predicted to be deleterious by SIFT and PolyPhen SNPs ID Alleles AA change Tolerance index PSIC rs1800072 G/A V11C 1.00 0.150 rs1800073 C/T R31C 0.18 2.288 rs1800074 A/T D44V 0.01 2.532 rs1800076 G/A R75Q 0.03 1.754 rs1800078 T/C L138P 0.01 2.192 rs35516286 T/C I148T 0.41 1.743 rs1800079 G/A R170H 0.05 1.968 rs1800080 A/G S182G 0.03 1.699 rs1800086 C/G T351S 0.30 1.600 rs1800087 A/C Q353H 0.03 2.093 rs4727853 C/A N417K 1.00 0.015 rs11531593 C/A F433L 0.65 0.694 rs1800089 C/T L467F 0.15 1.568 rs213950 G/A V470M 0.17 1.432 rs1800092 C/A/G I506M 0.00 1.574 rs1801178 A/G I507V 0.38 0.314 rs1800093 T/G F508C 0.00 3.031 rs35032490 A/G K532E 1.00 1.525 rs1800097 G/A V562I 0.13 0.345 rs41290377 G/C G576A 0.33 1.262 rs766874 C/T S605F 0.03 2.147 rs1800099 A/G S654G 0.03 1.611 rs1800100 C/T R668C 0.01 2.654 rs1800101 T/C F693L 0.61 0.895 rs1800103 A/G I807M 0.01 1.554 rs1800106 T/C Y903H 0.52 0.183 rs1800107 G/T S909I 0.10 1.624 rs1800110 T/C L967S 0.07 1.683 rs1800111 G/C L997F 0.24 1.000 rs1800112 T/C I1027T 0.03 1.860 rs1800114 C/T A1067V 0.04 1.542 rs36210737 T/A M1101K 0.05 2.637 rs35813506 G/A R1102K 0.52 1.589 rs1800120 G/T R1162L 0.00 2.038 rs1800123 C/T T1220I 0.22 0.059 rs34911792 T/G S1235R 0.45 1.483 rs11971167 G/A D1270N 0.12 1.739 rs4148725 C/T R1453W 0.00 2.513 Highly deleterious by SIFT and damaging by PolyPhen are indicated as bold deleterious in causing an effect in the structure and function of the protein by SIFT, PolyPhen and Pupasuite correlated well with experimental studies (Tsui 1992; Ghanem et al. 1994; Bienvenu et al. 1998) (Table 3).
X
ABCC7 p.Arg170His 18716917:125:364
status: NEW[hide] Independent contribution of common CFTR variants t... Pancreas. 2010 Mar;39(2):209-15. de Cid R, Ramos MD, Aparisi L, Garcia C, Mora J, Estivill X, Farre A, Casals T
Independent contribution of common CFTR variants to chronic pancreatitis.
Pancreas. 2010 Mar;39(2):209-15., [PMID:19812525]
Abstract [show]
OBJECTIVE: We have assessed whether CFTR gene has a major impact on chronic pancreatitis (CP) pathogenesis than that provided by the CFTR mutations. For this aim, we have evaluated clinical parameters, CFTR mutations, and 3 potential regulatory CFTR variants (coding single-nucleotide polymorphisms): c.1540A>G, c.2694T>G, and c.4521G>A. METHODS: CFTR gene analysis was performed in a cohort of 136 CP patients and 93 controls from Spanish population using current scanning techniques (single-strand conformation polymorphism/heteroduplex, denaturing gradient gel electrophoresis, and denaturing high-performance liquid chromatography) and direct sequencing. RESULTS: A higher frequency of CFTR mutations were observed in patients (39%) than in controls (15%; P < or = 0.001), differences being mostly attributable to the prevalence of the cystic fibrosis (CF)-causing mutations (P = 0.009). The analysis of variants has shown statistically significant differences between patients and controls for c.4521G>A (Pcorrected = 0.036). Furthermore, the multi-marker analysis revealed that the 1540A;2694G;4521A (AGA) haplotype was more prevalent in CP than controls (Pcorrected = 0.042). Remarkably, this association was unrelated to CF-causing mutations (P = 0.006). CONCLUSIONS: Our results corroborate the higher susceptibility of CF carriers to CP and, furthermore, suggest that the AGA haplotype could contribute to an increased risk in the development of CP irrespective of other CF-causing mutations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
38 Scanning Methodology Applied in CFTR Gene Analysis Amplicon Name Fragment Size, bp Control Set (n = 93) Patient Set 1 (n = 68) Patient Set 2 (n = 68) Control Sequence Exon 1 192 SSCP/HD SSCP/HD dHPLC 125G9C Exon 2 334 SSCP/HD SSCP/HD dHPLC 296+3insT Exon 3 309 DGGE DGGE dHPLC G85V Exon 4 436 SSCP/HD SSCP/HD dHPLC R117H Exon 5 466 DGGE DGGE dHPLC R170H Exon 6a 345 SSCP/HD SSCP/HD dHPLC L206W Exon 6b 331 SSCP/HD SSCP/HD SSCP/HD TTGA 6/7 Exon 7 410 SSCP/HD SSCP/HD dHPLC R334W Exon 8 328 DGGE DGGE dHPLC 1341+28C9T Exon 9 375 DGGE DGGE DGGE 7T/9T Exon 10 493 SSCP/HD SSCP/HD SSCP/HD F508del; 1540A/A Exon 11 322 DGGE DGGE dHPLC S549R Exon 12 426 DGGE DGGE dHPLC G576A Exon 13a 532 SSCP/HD SSCP/HD dHPLC R668C Exon 13b 498 SSCP/HD SSCP/HD dHPLC I807M Exon 14a 284 DGGE DGGE DGGE 2694T9G Exon 14b 211 DGGE DGGE dHPLC 2789+5G9A Exon 15 487 DGGE DGGE dHPLC D924N Exon 16 294 SSCP/HD SSCP/HD dHPLC 3041-71G9C Exon 17a 294 SSCP/HD SSCP/HD dHPLC L997F Exon 17b 463 DGGE DGGE dHPLC 3272-26A9G Exon 18 451 DGGE DGGE dHPLC N1148K Exon 19 588 SSCP/HD SSCP/HD SSCP/HD 3601-65C9A Exon 20 471 DGGE DGGE dHPLC W1282X Exon 21 477 DGGE DGGE DGGE 4029G9A Exon 22 339 SSCP/HD SSCP/HD dHPLC Q1352H Exon 23 249 DGGE DGGE dHPLC 4374+13A9G Exon 24 362 SSCP/HD SSCP/HD SSCP/HD 4521G9A Control set, general population series analyzed; patient set 1, previous patient series reported in 2004; and patient set 2, new patient series analyzed in this study.
X
ABCC7 p.Arg170His 19812525:38:348
status: NEW81 CFTR Genotypes in Chronic Pancreatitis Patients and General Population Pt/Phenotype CFTR Genotype Pt/Phenotype CFTR Genotype 1/ACP F508del† , I1027T/j 19/ACP* R668C/j 2/ACP* F508del† /j 20/ACP D836Y/j 3/ACP F508del† , I1027T/Y1014C 21/ACP* L997F† /j 4/ACP F508del† /1716G9A 22/ACP* R1162L/j 5/ACP* F508del† /1716G9A 23/ACP 5T-11TG/j 6/ACP* F508del† /S1235R 24/ACP 5T-11TG/j 7/ACP G542X† /j 25/ACP 5T-11TG/j 8/ACP* W1282X† /j 26/ACP* 5T-11TG/j 9/ACP 5T-12TG† /5T-11TG 27/ACP* 5T-11TG/j 10/ACP* 5T-12TG† /j 28/ACP 1716G9A/4374+13A9G 11/ACP R75Q/j 29/ACP 1716G9A/j 12/ACP R75Q/j 30/ACP 1716G9A/j 13/ACP Y122C/Y122C 31/ACP 1716G9A/j 14/ACP* R170C/j 32/ACP 1716G9A/j 15/ACP* R258G/j 33/ACP* 1716G9A/j 16/ACP* M281T/j 34/ACP 2377C9T/j 17/ACP* R297Q† /- 35/ACP* 2377C9T/j 18/ACP T351S/- 36/ACP 3499+37G9A/j 1/ICP F508del† /- 10/ICP* 1716G9A/j 2/ICP D443Y,G576A,R668C† /j 11/ICP* 1716G9A/j 3/ICP* D443Y,G576A,R668C† /j 12/ICP 1716G9A/j 4/ICP* P205S† /j 13/ICP* 1716G9A/j 5/ICP* L997F† /j 14/ICP* 1716G9A/j 6/ICP* R170H/1716G9A 15/ICP* 1716G9A/j 7/ICP 109A9G/j 16/ICP* 1716G9A/j 8/ICP* 5T-11TG/j 17/ICP 1716G9A/j 9/ICP* 5T-11TG/j 1/GP 5T-12TG† /j 8/GP 1716G9A/j 2/GP 5T-12TG† /j 9/GP 1716G9A/j 3/GP A534E† /j 10/GP 1716G/A/j 4/GP 5T-11TG/V562I 11/GP 1716G9A/j 5/GP 5T-11TG/j 12/GP 1716G9A/j 6/GP 5T-11TG/j 13/GP 3690A9G/j 7/GP 1716G9A/j 14/GP 3690A9G/j Corresponding mutation nomenclature (Human Genome Variation Society and Cystic Fibrosis Mutation Data Base): c.1584G9A (1716G9A), c.1210-7_1210-6delTT (5T), 1210-34_1210-13TG (11TG), g.-23A9G (109A9G), c.4242+13A9G (4374+13A9G), c.2245C9T (2377C9T), c.3367+ 37G9A (3499+37G9A), and c.3558A9G (3690A9G).
X
ABCC7 p.Arg170His 19812525:81:1124
status: NEW[hide] Do common in silico tools predict the clinical con... Clin Genet. 2010 May;77(5):464-73. Epub 2009 Jan 6. Dorfman R, Nalpathamkalam T, Taylor C, Gonska T, Keenan K, Yuan XW, Corey M, Tsui LC, Zielenski J, Durie P
Do common in silico tools predict the clinical consequences of amino-acid substitutions in the CFTR gene?
Clin Genet. 2010 May;77(5):464-73. Epub 2009 Jan 6., [PMID:20059485]
Abstract [show]
Computational methods are used to predict the molecular consequences of amino-acid substitutions on the basis of evolutionary conservation or protein structure, but their utility in clinical diagnosis or prediction of disease outcome has not been well validated. We evaluated three popular computer programs, namely, PANTHER, SIFT and PolyPhen, by comparing the predicted clinical outcomes for a group of known CFTR missense mutations against the diagnosis of cystic fibrosis (CF) and clinical manifestations in cohorts of subjects with CF-disease and CFTR-related disorders carrying these mutations. Owing to poor specificity, none of tools reliably distinguished between individual mutations that confer CF disease from mutations found in subjects with a CFTR-related disorder or no disease. Prediction scores for CFTR mutations derived from PANTHER showed a significant overall statistical correlation with the spectrum of disease severity associated with mutations in the CFTR gene. In contrast, PolyPhen- and SIFT-derived scores only showed significant differences between CF-causing and non-CF variants. Current computational methods are not recommended for establishing or excluding a CF diagnosis, notably as a newborn screening strategy or in patients with equivocal test results.
Comments [show]
None has been submitted yet.
No. Sentence Comment
64 Mutations in the CFTR gene grouped by clinical category Cystic fibrosis CFTR-related disease No disease T338I D614G L320V V920L L90S M470V H199R S1251N I203M G550R P111A I148T Q1291H R560K L1388Q L183I R170H I1027T S549R D443Y P499A L1414S T908N R668C S549N A455E E1401K Q151K G27E I1234L Y563N R347P C866R S1118C P1290S R75Q A559T V520F P841R M469V E1401G P67L G85E S50Y E1409K R933G G458V G178R Y1032C R248T I980K G85V V392G L973P L137H T351S R334W I444S V938G R792G R560T R555G L1339F D1305E P574H V1240G T1053I D58G G551D L1335P I918M F994C S945L L558S F1337V R810G D1152H G1247R P574S R766M D579G W1098R H949R F200I R352Q L1077P K1351E M244K L206W M1101K D1154G L375F N1303K R1066C E528D D110Y R347H R1070Q A800G P1021S S549K A1364V V392A damaging` (is supposed to affect protein function or structure) and 'probably damaging` (high confidence of affecting protein function or structure).
X
ABCC7 p.Arg170His 20059485:64:202
status: NEW[hide] Large genomic rearrangements in the CFTR gene cont... BMC Med Genet. 2007 Apr 20;8:22. Taulan M, Girardet A, Guittard C, Altieri JP, Templin C, Beroud C, des Georges M, Claustres M
Large genomic rearrangements in the CFTR gene contribute to CBAVD.
BMC Med Genet. 2007 Apr 20;8:22., [PMID:17448246]
Abstract [show]
BACKGROUND: By performing extensive scanning of whole coding and flanking sequences of the CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) gene, we had previously identified point mutations in 167 out of 182 (91.7%) males with isolated congenital bilateral absence of the vas deferens (CBAVD). Conventional PCR-based methods of mutation analysis do not detect gross DNA lesions. In this study, we looked for large rearrangements within the whole CFTR locus in the 32 CBAVD patients with only one or no mutation. METHODS: We developed a semi-quantitative fluorescent PCR assay (SQF-PCR), which relies on the comparison of the fluorescent profiles of multiplex PCR fragments obtained from different DNA samples. We confirmed the gross alterations by junction fragment amplification and identified their breakpoints by direct sequencing. RESULTS: We detected two large genomic heterozygous deletions, one encompassing exon 2 (c.54-5811_c.164+2186del8108ins182) [or CFTRdele2], the other removing exons 22 to 24 (c.3964-3890_c.4443+3143del9454ins5) [or CFTRdele 22_24], in two males carrying a typical CBAVD mutation on the other parental CFTR allele. We present the first bioinformatic tool for exon phasing of the CFTR gene, which can help to rename the exons and the nomenclature of small mutations according to international recommendations and to predict the consequence of large rearrangements on the open reading frame. CONCLUSION: Identification of large rearrangements further expands the CFTR mutational spectrum in CBAVD and should now be systematically investigated. We have designed a simple test to specifically detect the presence or absence of the two rearrangements identified in this study.
Comments [show]
None has been submitted yet.
No. Sentence Comment
54 Rearrangement c.3964- 3890_c.4443+3143del9454ins5 [CFTRdele22_24] (Figure 1B) was found in a 41-year-old man with Spanish and Sicily background carrying the missense mutation p.Arg170His.
X
ABCC7 p.Arg170His 17448246:54:177
status: NEW[hide] Analysis of the CFTR gene in Iranian cystic fibros... J Cyst Fibros. 2008 Mar;7(2):102-9. Epub 2007 Jul 27. Alibakhshi R, Kianishirazi R, Cassiman JJ, Zamani M, Cuppens H
Analysis of the CFTR gene in Iranian cystic fibrosis patients: identification of eight novel mutations.
J Cyst Fibros. 2008 Mar;7(2):102-9. Epub 2007 Jul 27., [PMID:17662673]
Abstract [show]
BACKGROUND: Cystic fibrosis (CF) is the most common inherited disorder in Caucasian populations, with over 1400 mutations identified in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. Mutations in the CFTR gene may be also causative for CBAVD (Congenital Bilateral Absence of the Vas Deferens). The type and distribution of mutations varies widely between different countries and/or ethnic groups, and is relatively unknown in Iran. We therefore performed a comprehensive analysis of the CFTR gene in Iranian CF patients. METHODS: 69 Iranian CF patients, and 1 CBAVD patient, were analysed for mutations in the complete coding region, and its exon/intron junctions, of their CFTR genes, using different methods, such as ARMS (amplification refractory mutation system)-PCR, SSCP (single stranded conformation polymorphism) analysis, restriction enzyme digestion analysis, direct sequencing, and MLPA (Multiplex Ligation-mediated Probe Amplification). RESULTS: CFTR mutation analysis revealed the identification of 37 mutations in 69 Iranian CF patients. Overall, 81.9% (113/138) CFTR genes derived from Iranian CF patients could be characterized for a disease-causing mutation. The CBAVD patient was found to be homozygous for the p.W1145R mutation. The most common mutations were p.F508del (DeltaF508) (18.1%), c.2183_2184delAAinsG (2183AA>G) (6.5%), p.S466X (5.8%), p.N1303K (4.3%), c.2789+5G>A (4.3%), p.G542X (3.6%), c.3120+1G>A (3.6%), p.R334W (2.9%) and c.3130delA (2.9%). These 9 types of mutant CFTR genes totaled for 52% of all CFTR genes derived from the 69 Iranian CF patients. Eight mutations, c.406-8T>C, p.A566D, c.2576delA, c.2752-1_2756delGGTGGCinsTTG, p.T1036I, p.W1145R, c.3850-24G>A, c.1342-?_1524+?del, were found for the first time in this study. CONCLUSIONS: We identified 37 CFTR mutations in 69 well characterized Iranian CF patients, obtaining a CFTR mutation detection rate of 81.9%, the highest detection rate obtained in the Iranian population so far. These findings will assist in genetic counseling, prenatal diagnosis and future screening of CF in Iran.
Comments [show]
None has been submitted yet.
No. Sentence Comment
37 1 c.406-3TNC I3 T to C at 406-3 mRNA splicing defect 1 p.R170H E5 G to A at 641 Arg to His at 170 1 p.D192G E5 A to G at 707 Asp to Gly at 192 2 p.R334W E7 C to T at 1132 Arg to Trp at 334 4 c.1525-1GNA I9 G to A at 1525-1 mRNA splicing defect 2 p.F508del E10 Deletion of CTT from 1653 Deletion of Phe at 508 25 p.S466X E10 C to G at 1529 Ser to stop at 466 8 c.1677delTA E10 Deletion of TA from 1677 Frame shift 2 p.G542X E11 G to T at 1756 Gly to stop at 542 5 p.S549R E11 T to G at 1779 Ser to Arg at 549 2 p.A566D E12 C to A at 1829 Ala to Asp at 566 2 c.1898+1GNT I12 G→T at 1898+1 mRNA splicing defect 2 c.2183_2184delAAinsG E13 A to G at 2183 and deletion of A at 2184 Frame shift 9 c.2576delA E13 Deletion of A at 2576 Frame shift 1 c.2043delG E13 Deletion of A at 2043 Frame shift 1 c.2184insA E13 Insertion of A after 2184 Frame shift 1 p.R785X E13 C to T at 2485 Arg to stop at 785 2 c.2752-1_2756delGGTGGCinsTTG I14a/ Deletion of GGTGGC mRNA splicing defect 2 E14b From 2752-1 to 2756 and insertion TTG c.2789+5GNA I14b G to A at 2789+5 mRNA splicing defect 6 p.S945L E15 C to Tat 2966 Ser to Leu at 945 2 c.3120+1GNA I16 G to A at 3120+1 mRNA splicing defect 5 c.3121-1GNA I16 G to A at 3121-1 mRNA splicing defect 2 c.3130delA E17a Deletion of A at 3130 Frame shift 4 p.T1036I E17a C to T at 3239 Thr to Ile at 1036 1 p.R1066C E17b C to T at 3328 Arg to Cys at 1066 1 p.L1077P E17b T to C at 3362 Leu to Pro at 1077 1 p.T1086I E17b C to T at 3389 Thr to Ile at 1086 1 p.R1162X E19 C to T at 3616 Arg to stop at 1162 2 p.K1177X E19 A to T at 3361 Lys to stop at 1177 2 c.3850-24GNA I19 G to A at 3850-24 mRNA splicing defect?
X
ABCC7 p.Arg170His 17662673:37:57
status: NEWX
ABCC7 p.Arg170His 17662673:37:80
status: NEW155 Possible explanations for failure to detect all mutations are: the mutations that are in intron sequences far from coding Table 3 CFTR mutation panel recommended for screening in Iranian CF patients Mutation Number of chromosomes Frequency p.F508del 25 18.1% c.2183_2184delAAinsG 9 6.5% p.S466X 8 5.8% p.N1303K 6 4.3% c.2789+5GNA 6 4.3% p.G542X 5 3.6% c.3120+1GNA 5 3.6% p.R334W 4 2.9% c.3130delA 4 2.9% Total 72 52.0% Table 4 Clinical features and some polymorphisms in 7 Iranian patients; in these patients a mutation could only be found on one CFTR gene Genotype PI/PS Sweat (Cl- ) TGm Tn (In8) GATT (In6a) 1001+11 (In6b) M470V p.K68E/U⁎ PI 80 TG10-T7_TG10-T7 GATT 7/7 C A c.406-8TNC/U PI 50 TG12-T7_TG11-T7 GATT 6/7 C A/G c.406-3TNC/U PI 90 TG11-T7_TG11-T7 GATT 7/7 C G p.R170H/U PS 80 TG11-T7_TG10-T7 GATT 7/7 C A/G c.3850-24GNA/U PI 55 TG11-T7_TG11-T7 GATT 7/7 C G c.2789+5GNA/U PI 50 TG11-T7_TG10-T7 GATT 7/7 C A/G c.2043delG/U PS 70 TG12-T7_TG10-T7 GATT 6/7 C A ⁎Unknown mutations; PS, indicates pancreatic sufficient; PI, pancreatic sufficient.
X
ABCC7 p.Arg170His 17662673:155:783
status: NEW154 Possible explanations for failure to detect all mutations are: the mutations that are in intron sequences far from coding Table 3 CFTR mutation panel recommended for screening in Iranian CF patients Mutation Number of chromosomes Frequency p.F508del 25 18.1% c.2183_2184delAAinsG 9 6.5% p.S466X 8 5.8% p.N1303K 6 4.3% c.2789+5GNA 6 4.3% p.G542X 5 3.6% c.3120+1GNA 5 3.6% p.R334W 4 2.9% c.3130delA 4 2.9% Total 72 52.0% Table 4 Clinical features and some polymorphisms in 7 Iranian patients; in these patients a mutation could only be found on one CFTR gene Genotype PI/PS Sweat (Cl- ) TGm Tn (In8) GATT (In6a) 1001+11 (In6b) M470V p.K68E/UÌe; PI 80 TG10-T7_TG10-T7 GATT 7/7 C A c.406-8TNC/U PI 50 TG12-T7_TG11-T7 GATT 6/7 C A/G c.406-3TNC/U PI 90 TG11-T7_TG11-T7 GATT 7/7 C G p.R170H/U PS 80 TG11-T7_TG10-T7 GATT 7/7 C A/G c.3850-24GNA/U PI 55 TG11-T7_TG11-T7 GATT 7/7 C G c.2789+5GNA/U PI 50 TG11-T7_TG10-T7 GATT 7/7 C A/G c.2043delG/U PS 70 TG12-T7_TG10-T7 GATT 6/7 C A Ìe;Unknown mutations; PS, indicates pancreatic sufficient; PI, pancreatic sufficient.
X
ABCC7 p.Arg170His 17662673:154:782
status: NEW[hide] Distribution of CFTR mutations in the Czech popula... J Cyst Fibros. 2013 Sep;12(5):532-7. doi: 10.1016/j.jcf.2012.12.002. Epub 2012 Dec 29. Krenkova P, Piskackova T, Holubova A, Balascakova M, Krulisova V, Camajova J, Turnovec M, Libik M, Norambuena P, Stambergova A, Dvorakova L, Skalicka V, Bartosova J, Kucerova T, Fila L, Zemkova D, Vavrova V, Koudova M, Macek M, Krebsova A, Macek M Jr
Distribution of CFTR mutations in the Czech population: positive impact of integrated clinical and laboratory expertise, detection of novel/de novo alleles and relevance for related/derived populations.
J Cyst Fibros. 2013 Sep;12(5):532-7. doi: 10.1016/j.jcf.2012.12.002. Epub 2012 Dec 29., [PMID:23276700]
Abstract [show]
BACKGROUND: This two decade long study presents a comprehensive overview of the CFTR mutation distribution in a representative cohort of 600 Czech CF patients derived from all regions of the Czech Republic. METHODS: We examined the most common CF-causing mutations using the Elucigene CF-EU2v1 assay, followed by MLPA, mutation scanning and/or sequencing of the entire CFTR coding region and splice site junctions. RESULTS: We identified 99.5% of all mutations (1194/1200 CFTR alleles) in the Czech CF population. Altogether 91 different CFTR mutations, of which 20 were novel, were detected. One case of de novo mutation and a novel polymorphism was revealed. CONCLUSION: The commercial assay achieved 90.7%, the MLPA added 1.0% and sequencing increased the detection rate by 7.8%. These comprehensive data provide a basis for the improvement of CF DNA diagnostics and/or newborn screening in our country. In addition, they are relevant to related Central European populations with lower mutation detection rates, as well as to the sizeable North American "Bohemian diaspora".
Comments [show]
None has been submitted yet.
No. Sentence Comment
48 [125CNT]+[223CNT] S42F/R75X# Ex2/Ex3 1 0.08 44. c.164+1GNA 296+1GNA In2 1 0.08 45. c.274GNA E92K# Ex4 1 0.08 46. c.349CNT R117C*# Ex4 1 0.08 47. c.509GNA R170H Ex5 1 0.08 48. c.533GNA G178E Ex5 1 0.08 49. c.579+1GNT 711+1GNT*# In5 1 0.08 50. c.902ANG Y301C Ex7 1 0.08 51. c.1040GNA R347H*# Ex7 1 0.08 52. c.1114CNT Q372X Ex7 1 0.08 53. c.1117-1GNA 1249-1GNA In7 1 0.08 54. c.1209+1GNA 1341+1GNA# In8 1 0.08 55. c.1519_1521delATC I507del*# Ex10 1 0.08 56. c.1654CNT Q552X# Ex11 1 0.08 57. c.1673TNC L558S# Ex11 1 0.08 58. c.1679+1GNC 1811+1GNC In11 1 0.08 59. c.1687TNC Y563H Ex12 1 0.08 60. c.1753GNT E585X# Ex12 1 0.08 61. c.1766+1GNC 1898+1GNC In12 1 0.08 62. c.2044delA 2176delA Ex13 1 0.08 63. c.2051_2052delAAinsG 2183delAANG# Ex13 1 0.08 64. c.2052delA 2184delA*# Ex13 1 0.08 3.
X
ABCC7 p.Arg170His 23276700:48:154
status: NEW[hide] Genetics and treatment options for recurrent acute... Curr Treat Options Gastroenterol. 2014 Sep;12(3):359-71. doi: 10.1007/s11938-014-0022-y. Shelton CA, Whitcomb DC
Genetics and treatment options for recurrent acute and chronic pancreatitis.
Curr Treat Options Gastroenterol. 2014 Sep;12(3):359-71. doi: 10.1007/s11938-014-0022-y., [PMID:24954874]
Abstract [show]
OPINION STATEMENT: Worldwide research efforts demonstrate a major role of gene-environment interactions for the risk, development, and progression of most pancreatic diseases, including recurrent acute and chronic pancreatitis. New findings of pancreas disease-associated risk variants have been reported in the CPA1, GGT1, CLDN2, MMP1, MTHFR, and other genes. These risk genes and their regulatory regions must be added to the known pathogenic variants in the PRSS1, SPINK1, CFTR, CTRC, CASR, UBR1, SBDS, CEL, and CTSB genes. This new knowledge promises to improve disease management and prevention through personalized medicine. At the same time, however, knowledge of an increasing number of pathogenic variants, and their complicated effects when present in combination, results in increasing difficulty in interpretation and development of recommendations. Direct-to-consumer marketing of genetic testing results also adds complexity to disease management paradigms, especially without interpretation and, in many cases, proven accuracy. While improvements in the ability to rapidly and accurately interpret complex genetic tests are clearly needed, some results, such as pathogenic CFTR variants, including a new class of bicarbonate-defective mutations, and PRSS1 variants have immediate implications that direct management. In addition, discovery of pancreatitis-associated genetic variants in patients with glucose intolerance may suggest underlying type 3c diabetes, which also has implications for treatment and disease management.
Comments [show]
None has been submitted yet.
No. Sentence Comment
44 Members of the CFTR bicarbonate-defective genetic variants (CFTRBD ) include R74Q, R75Q, R117H, R170H, L967S, L997F, D1152H, S1235R, and D1270N [23ߦߦ, 25].
X
ABCC7 p.Arg170His 24954874:44:96
status: NEW[hide] Mechanisms of CFTR functional variants that impair... PLoS Genet. 2014 Jul 17;10(7):e1004376. doi: 10.1371/journal.pgen.1004376. eCollection 2014 Jul. LaRusch J, Jung J, General IJ, Lewis MD, Park HW, Brand RE, Gelrud A, Anderson MA, Banks PA, Conwell D, Lawrence C, Romagnuolo J, Baillie J, Alkaade S, Cote G, Gardner TB, Amann ST, Slivka A, Sandhu B, Aloe A, Kienholz ML, Yadav D, Barmada MM, Bahar I, Lee MG, Whitcomb DC
Mechanisms of CFTR functional variants that impair regulated bicarbonate permeation and increase risk for pancreatitis but not for cystic fibrosis.
PLoS Genet. 2014 Jul 17;10(7):e1004376. doi: 10.1371/journal.pgen.1004376. eCollection 2014 Jul., [PMID:25033378]
Abstract [show]
CFTR is a dynamically regulated anion channel. Intracellular WNK1-SPAK activation causes CFTR to change permeability and conductance characteristics from a chloride-preferring to bicarbonate-preferring channel through unknown mechanisms. Two severe CFTR mutations (CFTRsev) cause complete loss of CFTR function and result in cystic fibrosis (CF), a severe genetic disorder affecting sweat glands, nasal sinuses, lungs, pancreas, liver, intestines, and male reproductive system. We hypothesize that those CFTR mutations that disrupt the WNK1-SPAK activation mechanisms cause a selective, bicarbonate defect in channel function (CFTRBD) affecting organs that utilize CFTR for bicarbonate secretion (e.g. the pancreas, nasal sinus, vas deferens) but do not cause typical CF. To understand the structural and functional requirements of the CFTR bicarbonate-preferring channel, we (a) screened 984 well-phenotyped pancreatitis cases for candidate CFTRBD mutations from among 81 previously described CFTR variants; (b) conducted electrophysiology studies on clones of variants found in pancreatitis but not CF; (c) computationally constructed a new, complete structural model of CFTR for molecular dynamics simulation of wild-type and mutant variants; and (d) tested the newly defined CFTRBD variants for disease in non-pancreas organs utilizing CFTR for bicarbonate secretion. Nine variants (CFTR R74Q, R75Q, R117H, R170H, L967S, L997F, D1152H, S1235R, and D1270N) not associated with typical CF were associated with pancreatitis (OR 1.5, p = 0.002). Clones expressed in HEK 293T cells had normal chloride but not bicarbonate permeability and conductance with WNK1-SPAK activation. Molecular dynamics simulations suggest physical restriction of the CFTR channel and altered dynamic channel regulation. Comparing pancreatitis patients and controls, CFTRBD increased risk for rhinosinusitis (OR 2.3, p<0.005) and male infertility (OR 395, p<<0.0001). WNK1-SPAK pathway-activated increases in CFTR bicarbonate permeability are altered by CFTRBD variants through multiple mechanisms. CFTRBD variants are associated with clinically significant disorders of the pancreas, sinuses, and male reproductive system.
Comments [show]
None has been submitted yet.
No. Sentence Comment
5 Nine variants (CFTR R74Q, R75Q, R117H, R170H, L967S, L997F, D1152H, S1235R, and D1270N) not associated with typical CF were associated with pancreatitis (OR 1.5, p = 0.002).
X
ABCC7 p.Arg170His 25033378:5:39
status: NEW62 Of 43 CFTR variants identified in the NAPS2 cohort (Table 1), nine not associated with typical CF but reported in patients with pancreatitis[25-29] were of particular interest: R74Q, R75Q, R117H (CFTRm-v only when in cis with IVS8-T5[30]; R117H*T5), R170H, L967S, L997F, D1152H, S1235R, and D1270N.
X
ABCC7 p.Arg170His 25033378:62:250
status: NEW78 In contrast, CFTR PHCO3/PCl failed to increase in CFTR R170H (Figure 1d) and all of the candidate CFTRBD variants (Figures 1e and S2).
X
ABCC7 p.Arg170His 25033378:78:55
status: NEW95 CFTR variant %Cases %Uctrls OR p-value %Cases w/N34S OR w/N34S p-value w/N34S CF/BD or BD/BD 2.5 0.1 31.9 ,0.0001 5.5 7.46 0.12 All CF 8.7 3.3 2.76 ,0.0001 16.4 5.65 ,0.0001 F508del CF 6.9 3.1 2.32 ,0.0001 14.5 5.13 ,0.0001 IVS8T5** CF 9.9 8.2 1.24 0.079 10.9 1.37 0.47 2789+5G.A CF 0.3 0.0 0.028 0.0 3849+10kbC.T CF 0.3 0.0 0.028 0.0 N1303K CF 0.3 0.0 0.027 0.0 621+1G.T CF 0.1 0.0 0.13 1.8 ,0.0001 2184delA CF 0.1 0.0 0.13 0.0 3120+1G.A CF 0.1 0.0 0.13 0.0 G551D CF 0.2 0.1 2.50 0.20 0.0 0.00 0.83 W1282X CF 0.2 0.1 2.50 0.20 0.0 0.00 0.83 G542X CF 0.2 0.0 0.059 0.0 R1162X CF 0.1 0.0 0.13 0.0 2183AA.G CF 0.0 0.1 0.17 0.0 0.00 0.83 All BD 14.2 9.8 1.50 0.002 25.5 4.63 ,0.0001 R75Q BD 6.3 6.2 1.02 0.30 16.4 2.97 0.003 S1235R BD 2.4 1.4 1.69 0.052 1.8 1.30 0.80 R117H CF/BD 2.3 0.7 3.49 0.0007 5.5 8.74 0.0002 L967S BD 1.1 0.2 6.87 0.002 1.8 11.17 0.014 L997F BD 0.8 1.0 0.82 0.26 1.8 1.84 0.55 D1152H BD 0.4 0.0 0.014 0.0 D1270N BD 0.3 0.2 1.25 0.29 0.0 0.00 0.71 R170H BD 0.3 0.0 0.028 0.0 R74Q BD 0.3 0.1 3.02 0.17 1.8 21.15 0.002 Other M470V 76.1 74.2 1.11 0.14 70.9 0.85 0.59 T854T 57.3 57.8 0.98 0.29 45.5 0.61 0.071 Q1463Q 39.6 39.5 1.01 0.30 40.0 1.02 0.94 1001+11C.T* 13.4 10.9 1.27 0.016 14.5 1.40 0.42 125G.C 10.3 9.7 1.07 0.26 12.7 1.36 0.45 P1290P 7.6 7.9 0.95 0.28 7.3 0.91 0.86 1716G.A 4.5 4.1 1.10 0.26 1.8 0.43 0.39 R668C 1.0 1.4 0.72 0.19 0.0 0.00 0.38 G576A 0.7 1.2 0.58 0.11 0.0 0.00 0.41 computationally modeled the molecular structure, and studied the dynamics, of wild type (WT) and mutated CFTR channels.
X
ABCC7 p.Arg170His 25033378:95:968
status: NEW158 Whole-cell currents of R170H-CFTR were measured in HEK 293T cells using the same protocol shown in panel c.
X
ABCC7 p.Arg170His 25033378:158:23
status: NEW170 Five variants (R74Q, R75Q, R170H, L967S, and R1162L) were located in the hinge region that modulates the collective movements of the NBDs with respect to the MSDs (Figure 3).
X
ABCC7 p.Arg170His 25033378:170:27
status: NEW176 R170H was first reported Figure 3.
X
ABCC7 p.Arg170His 25033378:176:0
status: NEW195 doi:10.1371/journal.pgen.1004376.g002 in two cases of congenital bilateral aplasia of vas deferens in England [53] but is not currently in the CFTR2 mutation database. CFTR R170H was identified in three cases and no controls (p = ns).
X
ABCC7 p.Arg170His 25033378:195:174
status: NEW269 67 SNPs (125GtoC, 1716G.A, 1717-1G.A, 1898+1G.A, 2183AA.G, 2184delA, 2789+5G.A, 3120+1G.A, 3659delC, 3849+10kbC.T, 621+ 1G.T, 711+5G.A, A455E, D110H, D1152H, D1270N, D443Y, D579G, F1052V, F1074L, F508C, F508del, G1069R, G1244E, G1349D, G178R, G542X, G551D, G551S, I1131L/V, I148T, I336K/T, I507del, I807M, IVS8T5, K1180T, L1065P, L967S, L997F, M1V, M470V, M952I, M952T, N1303K, P67L, Q1463Q, R1070Q, R1162X, R117C, R117H, R170H, R258G, R297Q, R31C, R352Q, R553X, R668C, R74W, R75Q, S1235R, S1255P, S485R, S977F, T338I, T854T, V201M, W1282X) were multiplexed into 6 wells; 14 SNPs (S492F, S945L, R74Q, R560T, R1162L, G85E, I1027T, R334W, R347P, G576A, 711+1G.T, 1001+11C.T, P1290P, 3199del6) were ascertained separately via TaqMan Gene Expression Assays, with repeat confirmation of all positive results.
X
ABCC7 p.Arg170His 25033378:269:422
status: NEW[hide] Inconclusive diagnosis of cystic fibrosis after ne... Pediatrics. 2015 Jun;135(6):e1377-85. doi: 10.1542/peds.2014-2081. Epub 2015 May 11. Ooi CY, Castellani C, Keenan K, Avolio J, Volpi S, Boland M, Kovesi T, Bjornson C, Chilvers MA, Morgan L, van Wylick R, Kent S, Price A, Solomon M, Tam K, Taylor L, Malitt KA, Ratjen F, Durie PR, Gonska T
Inconclusive diagnosis of cystic fibrosis after newborn screening.
Pediatrics. 2015 Jun;135(6):e1377-85. doi: 10.1542/peds.2014-2081. Epub 2015 May 11., [PMID:25963003]
Abstract [show]
OBJECTIVES: To prospectively study infants with an inconclusive diagnosis of cystic fibrosis (CF) identified by newborn screening (NBS; "CF screen positive, inconclusive diagnosis" [CFSPID]) for disease manifestations. METHODS: Infants with CFSPID and CF based on NBS from 8 CF centers were prospectively evaluated and monitored. Genotype, phenotype, repeat sweat test, serum trypsinogen, and microbiology data were compared between subjects with CF and CFSPID and between subjects with CFSPID who did (CFSPID-->CF) and did not (CFSPID-->CFSPID) fulfill the criteria for CF during the first 3 years of life. RESULTS: Eighty-two subjects with CFSPID and 80 subjects with CF were enrolled. The ratio of CFSPID to CF ranged from 1:1.4 to 1:2.9 in different centers. CFTR mutation rates did not differ between groups; 96% of subjects with CFSPID and 93% of subjects with CF had 2 mutations. Subjects with CFSPID had significantly lower NBS immunoreactive trypsinogen (median [interquartile range]:77 [61-106] vs 144 [105-199] mug/L; P < .0001) than did subjects with CF. Pseudomonas aeruginosa and Stenotrophomonas maltophilia were isolated in 12% and 5%, respectively, of subjects with CFSPID. CF was diagnosed in 9 of 82 (11%) subjects with CFSPID (genotype and abnormal sweat chloride = 3; genotype alone = 4; abnormal sweat chloride only = 2). Sweat chloride was abnormal in CFSPID-->CF patients at a mean (SD) age of 21.3 (13.8) months. CFSPID-->CF patients had significantly higher serial sweat chloride (P < .0001) and serum trypsinogen (P = .009) levels than did CFSPID-->CFSPID patients. CONCLUSIONS: A proportion of infants with CFSPID will be diagnosed with CF within the first 3 years. These findings underscore the need for clinical monitoring, repeat sweat testing at age 2 to 3 years, and extensive genotyping.
Comments [show]
None has been submitted yet.
No. Sentence Comment
103 In combination with a disease-causing mutation, R117H-7T has been associated with diagnostic uncertainties in CF, TABLE 2 Genotypes of Subjects With CFSPID According to Initial Sweat Chloride Measurements Sweat Chloride ,30 mmol/L Sweat Chloride 30-59 mmol/L Allele 1 Allele 2 n Allele 1 Allele 2 n F508dela R117H (7T)b 9 F508dela R117Cd 2c F508dela 5Tb 2 F508dela L206Wd 2c F508dela D1152Hb 2 F508dela P67Ld 1c F508dela R117Hb 1 F508dela 5Tb 8 F508dela D1270Nb 1 F508dela R117H (7T)b 3 F508dela L997F 3 F508dela R117Hb 3 F508dela 1716G.A 1 F508dela S1455X 1c F508dela 621+3G.A 1 F508dela R170H 1 F508dela I1328T 1 F508dela I148T 1 F508dela L967S 1 F508dela L997F 1 F508dela M1137T 1 F508dela Q1476X 1 F508dela Y301C 1 F508dela S1235R 1 1717-1G.Aa D1152Hb 1 F508dela T1299I 1 2183AA.Ga 5Tb 1 2183AA.Ga R117Cd 1 2183AA.Ga S431G 1 2789+5G.Aa R117H (7T)b 1 3849+10kbC.Ta 3041-15T.G 1 3849+10kbC.Ta 3041-15T.G 1 621+1G.Ta R117H (7T)b 1 621+1G.Ta G1069Rb 1 711+1G.Ta D1152Hb 1 G542Xa L206Wd 1c G542Xa R117H (7T)b 1 G542Xa C1410T 1 G542Xa D1152Hb 1 G551Da 5Tb 1 G551Da D1152Hb 1 N1303Ka 5Tb 1 N1303Ka D1152Hb 1 R1162Xa R117H (7T)b 1c N1303Ka E527G 1 R553Xa 5Tb 1 R117H (5T)a 5Tb 1 R553Xa L997F 1 R117H (7T)b R117H (7T)b 1 R560Ta G576A 1 R117H (7T)b 3041_71G.C 1 W1282Xa 5Tb 2 R117Hb Q1476X 1 F508dela - 2 R117H (5T)a - 1 -, no mutation identified on the second allele.
X
ABCC7 p.Arg170His 25963003:103:589
status: NEW[hide] The improvement of the best practice guidelines fo... Eur J Hum Genet. 2015 May 27. doi: 10.1038/ejhg.2015.99. Girardet A, Viart V, Plaza S, Daina G, De Rycke M, Des Georges M, Fiorentino F, Harton G, Ishmukhametova A, Navarro J, Raynal C, Renwick P, Saguet F, Schwarz M, SenGupta S, Tzetis M, Roux AF, Claustres M
The improvement of the best practice guidelines for preimplantation genetic diagnosis of cystic fibrosis: toward an international consensus.
Eur J Hum Genet. 2015 May 27. doi: 10.1038/ejhg.2015.99., [PMID:26014425]
Abstract [show]
Cystic fibrosis (CF) is one of the most common indications for preimplantation genetic diagnosis (PGD) for single gene disorders, giving couples the opportunity to conceive unaffected children without having to consider termination of pregnancy. However, there are no available standardized protocols, so that each center has to develop its own diagnostic strategies and procedures. Furthermore, reproductive decisions are complicated by the diversity of disease-causing variants in the CFTR (cystic fibrosis transmembrane conductance regulator) gene and the complexity of correlations between genotypes and associated phenotypes, so that attitudes and practices toward the risks for future offspring can vary greatly between countries. On behalf of the EuroGentest Network, eighteen experts in PGD and/or molecular diagnosis of CF from seven countries attended a workshop held in Montpellier, France, on 14 December 2011. Building on the best practice guidelines for amplification-based PGD established by ESHRE (European Society of Human Reproduction and Embryology), the goal of this meeting was to formulate specific guidelines for CF-PGD in order to contribute to a better harmonization of practices across Europe. Different topics were covered including variant nomenclature, inclusion criteria, genetic counseling, PGD strategy and reporting of results. The recommendations are summarized here, and updated information on the clinical significance of CFTR variants and associated phenotypes is presented.European Journal of Human Genetics advance online publication, 27 May 2015; doi:10.1038/ejhg.2015.99.
Comments [show]
None has been submitted yet.
No. Sentence Comment
104 I1027T is usually found in cis with F508del: Notes: (i) Some missense variants classified as either indeterminate or non CF-causing (R74Q, R75Q, R117H, R170H, L967S, L997F, D1152H, S1235R and D1270N) can selectively alter the bicarbonate permeation of the CFTR channel (but not the chloride channel), thus affecting primarily the organs that utilize CFTR for bicarbonate secretion (pancreas, nasal sinus, or vas deferens) and, consequently, they could be involved in the pathogenic mechanisms of CFTR-RDs.14 (ii) In Table 1, the traditional name of common CFTR variants is referenced alongside the HGVS version in order to ensure compatibility with clinical reports and understanding by clinicians and couples.
X
ABCC7 p.Arg170His 26014425:104:152
status: NEW