ABCC7 p.Asp443Tyr
ClinVar: |
c.1327G>T
,
p.Asp443Tyr
?
, Conflicting interpretations of pathogenicity, not provided
|
CF databases: |
c.1327G>T
,
p.Asp443Tyr
(CFTR1)
?
, This mutation has been found in one among 50 non-[delta]F508 CF chromosomes. Another substitution G->A at the same position has been already described by Costes et al (NL #60). The patient is an infertile man with congenital bilateral absence of the vas deferens. He has [delta]F508 mutation on the other chromosome. This mutation is frequently observed in CBAVD patients (4 cases) and in patients with idiopathic chronic pancreatitis (2 cases). This mutation is frequently associated in cis with other missense mutations (G576A and R668C).
|
Predicted by SNAP2: | A: D (59%), C: D (75%), E: D (75%), F: D (85%), G: D (53%), H: D (59%), I: D (85%), K: D (75%), L: D (85%), M: D (85%), N: N (87%), P: D (91%), Q: D (63%), R: D (91%), S: D (53%), T: D (75%), V: D (85%), W: D (91%), Y: D (63%), |
Predicted by PROVEAN: | A: D, C: D, E: N, F: D, G: N, H: N, I: D, K: N, L: D, M: D, N: N, P: D, Q: N, R: D, S: N, T: N, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Complete mutational screening of the cystic fibros... Hum Reprod. 1999 Dec;14(12):3035-40. Pallares-Ruiz N, Carles S, Des Georges M, Guittard C, Arnal F, Humeau C, Claustres M
Complete mutational screening of the cystic fibrosis transmembrane conductance regulator gene: cystic fibrosis mutations are not involved in healthy men with reduced sperm quality.
Hum Reprod. 1999 Dec;14(12):3035-40., [PMID:10601093]
Abstract [show]
Based on the analysis of the most frequent mutations responsible for cystic fibrosis (CF), a higher than expected frequency of CF mutations was recently reported in men with infertility due to reduced sperm quality. To further document whether this condition is associated with severe or mild abnormalities of cystic fibrosis transmembrane conductance regulator (CFTR) functions, we carried out a complete scanning of CFTR sequences using a strategy that detects almost all 850 mutations and 150 polymorphisms reported to date in the CFTR gene. We have investigated a cohort of 56 patients with severe oligoasthenoteratozoospermia (OAT) and 50 controls from southern France for CFTR gene mutations and variations. The frequencies of CF-causing mutations and CFTR variations identified in this OAT sample did not differ significantly from the frequencies found in the normal population. However, we observed a 1.7-fold increase in the proportion of homozygotes for a specific CFTR haplotype (TG11-T7-G1540) in the OAT group (P = 0.025). Our results do not confirm a link between CF mutations and reduced sperm quality. Further studies are needed to substantiate the hypothesis that a combination of variants affecting expression and function of the CFTR protein is associated with male infertility.
Comments [show]
None has been submitted yet.
No. Sentence Comment
65 cThree CBAVD alleles with 1859G/Cϩ2134C/T and mutation D443Y.
X
ABCC7 p.Asp443Tyr 10601093:65:61
status: NEW81 CBAVD alleles carrying D443Y).
X
ABCC7 p.Asp443Tyr 10601093:81:23
status: NEW[hide] Histological and genetic analysis and risk assessm... Hum Reprod. 2000 Jul;15(7):1613-8. Viville S, Warter S, Meyer JM, Wittemer C, Loriot M, Mollard R, Jacqmin D
Histological and genetic analysis and risk assessment for chromosomal aberration after ICSI for patients presenting with CBAVD.
Hum Reprod. 2000 Jul;15(7):1613-8., [PMID:10875876]
Abstract [show]
Intracytoplasmic sperm injection (ICSI) has opened a new field in the treatment of male infertility, leading to a debate concerning its genetic safety. In this study we present an analysis of 11 patients presenting congenital bilateral absence of the vas deferens (CBAVD). In all 11 cases, genetic counselling, histological analysis of testicular biopsies, cystic fibrosis transmembrane conductance regulator (CFTR) mutation screenings of both partners and spermatozoa three-colour fluorescent in-situ hybridization (FISH) analysis were performed. A total of 31 CFTR mutations were screened and mutations were found in eight out of 11 cases, with DeltaF508 being the most common mutation found. Histological analyses showed that seven out of 11 patients had normal tubule/membrane/interstitium (TMI) and Johnsen scores, while the remaining four patients had mild impairment of testicular parenchyma. The average aneuploidy rate was 6.8 +/- 3.9% compared with two control subjects with 4.4 and 5.4% aneuploidy rates respectively, using FISH analysis. After ICSI, the fertilization and pregnancy rates were 66.2 and 22.7% respectively. Thus, in our case of CBAVD, the risk of chromosomal aberration following ICSI, in the absence of a CFTR mutation in the male patient and/or in his partner, was not higher than in normal fertile men. Furthermore, the pregnancy success rate following ICSI of these CBAVD patients was comparable to the general ICSI population, even when histological analysis showed limited spermatogenesis.
Comments [show]
None has been submitted yet.
No. Sentence Comment
50 Slides were air-dried at room temperature, washed ∆F508/D443Y and R117H-7T/5T (see Table I) As expected once in PBS, dehydrated in an ethanol series (70, 90, 100%), air- the ∆F508 mutation was the most frequently found (64%).
X
ABCC7 p.Asp443Tyr 10875876:50:63
status: NEW60 TMI score Johnsen score CF mutation screening Sweat test Karyotype Family history 1 1 12 NF ND ND No 2 1 12 ∆F508/NF ND Normal No 3 3 11 R117H-7T/5T ND Normal No 4 3 11 NF ND Normal Yes 5 1 11 ∆F508/NF ND Normal No 6 2 11 ∆F508/R347H ND ND Yes 7 4 10 ∆F508/5T ND ND No 8 3 10 ∆F508/NF Neg ND No 9 1 11 NF Pos ND No 10 2 11 ∆F508/R117C Pos ND Yes 11 2 11 ∆F508/D443Y Pos ND No TMI ϭ tubule/membrane/interstitium; CF ϭ cystic fibrosis; ND ϭ not determined; Neg ϭ negative; Pos ϭ positive; NF ϭ not found in 31 screened mutations, including ∆F508, R117H and the variant IVS5T.
X
ABCC7 p.Asp443Tyr 10875876:60:409
status: NEW[hide] Fetal bowel hyperechogenicity may indicate mild at... J Med Genet. 2000 Aug;37(8):E15. Abramowicz MJ, Dessars B, Sevens C, Goossens M, Girodon-Boulandet E
Fetal bowel hyperechogenicity may indicate mild atypical cystic fibrosis: a case associated with a complex CFTR allele.
J Med Genet. 2000 Aug;37(8):E15., [PMID:10922395]
Abstract [show]
Comments [show]
None has been submitted yet.
No. Sentence Comment
18 CFTR gene studies were pursued using a DGGE scanning strategy,8 9 and the maternal CFTR allele was found to carry three missense mutations, D443Y (1459G>T, exon 9), G576A (1859G>C, exon 12), and R668C (2134C>T exon 13), which have each previously been reported in males with CBAVD.10-12 On further analysis, the complex mutated maternal allele was found in the younger boy.
X
ABCC7 p.Asp443Tyr 10922395:18:140
status: NEW25 The two brothers and fetus are compound heterozygotes for the N1303K mutation and the complex CFTR allele D443Y-G576A-R668C.
X
ABCC7 p.Asp443Tyr 10922395:25:106
status: NEW29 N1303K N D443Y G576A R668C N D443Y G576A R668C N1303K D443Y G576A R668C N1303K D443Y G576A R668C N1303K Electronic letter of 3 www.jmedgenet.com a regular basis and propose the following approach.
X
ABCC7 p.Asp443Tyr 10922395:29:9
status: NEWX
ABCC7 p.Asp443Tyr 10922395:29:29
status: NEWX
ABCC7 p.Asp443Tyr 10922395:29:54
status: NEWX
ABCC7 p.Asp443Tyr 10922395:29:79
status: NEW39 D443Y, G576A, and R668C have been observed independently or in pairs, in patients with a CF related syndrome for whom the whole CFTR coding sequence has been analysed: D443Y, G576A, R668C, D443Y-G576A, D443Y-R668C in CBAVD patients10-12 and G576A-R668C in a patient with disseminated bronchiectasis, but with no other CF causing mutation found in trans.15 To our knowledge, the D443Y mutation was only observed in CBAVD patients.11 12 The G576A and R668C variations have both initially been described as polymorphisms since they were found on the non-CF chromosome of the mother of a CF child.8 However, they were later considered as putative mild mutations associated with a CBAVD phenotype when combined in trans with F508.16 17 These genotypes may possibly not be disease causing in women.
X
ABCC7 p.Asp443Tyr 10922395:39:0
status: NEWX
ABCC7 p.Asp443Tyr 10922395:39:168
status: NEWX
ABCC7 p.Asp443Tyr 10922395:39:189
status: NEWX
ABCC7 p.Asp443Tyr 10922395:39:202
status: NEWX
ABCC7 p.Asp443Tyr 10922395:39:378
status: NEW48 It is thus possible that, in our family, the D443Y variation worsens a very mild deleterious eVect of the G576A-R668C allele, or vice versa, accounting for the abnormal sweat test and, perhaps, the respiratory infections in the younger brother.
X
ABCC7 p.Asp443Tyr 10922395:48:45
status: NEW[hide] Prenatal detection of cystic fibrosis by ultrasono... J Med Genet. 2002 Jun;39(6):443-8. Scotet V, De Braekeleer M, Audrezet MP, Quere I, Mercier B, Dugueperoux I, Andrieux J, Blayau M, Ferec C
Prenatal detection of cystic fibrosis by ultrasonography: a retrospective study of more than 346 000 pregnancies.
J Med Genet. 2002 Jun;39(6):443-8., [PMID:12070257]
Abstract [show]
Comments [show]
None has been submitted yet.
No. Sentence Comment
241 However, they based their comparison on an expected carrier rate in the general population which appears to be overestimated.1 The CFTR mutations identified in fetuses with echogenic bowel that have been reported so far are associated with pancreatic insufficiency (for example, ∆F508, G542X, G551D, Table 2 Ability of the ultrasound examination to detect cystic fibrosis Cystic fibrosis TotalYes No Utrasound examination Abnormal 14 128 142 Normal 112 346 300 346 412 Total 126 346 428 346 554 2183AA→G, ∆F311).9 13 27 43 To our knowledge, only one mutation associated with a mild phenotype (R117H)13 and one mild complex CFTR allele (D443Y-G576A-R668C)44 have been identified in two of the CF affected fetuses.
X
ABCC7 p.Asp443Tyr 12070257:241:659
status: NEW[hide] Missense, nonsense, and neutral mutations define j... J Biol Chem. 2003 Jul 18;278(29):26580-8. Epub 2003 May 5. Pagani F, Buratti E, Stuani C, Baralle FE
Missense, nonsense, and neutral mutations define juxtaposed regulatory elements of splicing in cystic fibrosis transmembrane regulator exon 9.
J Biol Chem. 2003 Jul 18;278(29):26580-8. Epub 2003 May 5., 2003-07-18 [PMID:12732620]
Abstract [show]
Exonic sequence variations may induce exon inclusion or exclusion from the mature mRNA by disrupting exonic regulatory elements and/or by affecting a nuclear reading frame scanning mechanism. We have carried out a systematic study of the effect on cystic fibrosis transmembrane regulator exon 9 splicing of natural and site-directed sequence mutations. We have observed that changes in the splicing pattern were not related to the creation of premature termination codons, a fact that indicates the lack of a significant nuclear check of the reading frame in this system. In addition, the splice pattern could not be predicted by available Ser/Arg protein matrices score analysis. An extensive site-directed mutagenesis of the 3' portion of the exon has identified two juxtaposed splicing enhancer and silencer elements. The study of double mutants at these regulatory elements showed a complex regulatory activity. For example, one natural mutation (146C) enhances exon inclusion and overrides all of the downstream silencing mutations except for a C to G transversion (155G). This unusual effect is explained by the creation of a specific binding site for the inhibitory splicing factor hnRNPH. In fact, on the double mutant 146C-155G, the silencing effect is dominant. These results indicate a strict dependence between the two juxtaposed enhancer and silencer sequences and show that many point mutations in these elements cause changes in splicing efficiency by different mechanisms.
Comments [show]
None has been submitted yet.
No. Sentence Comment
84 The G118T (D443Y) and G157T (V456F) mutations did not significantly affect the splicing pattern, whereas the A146C (Q452P) caused an almost complete inclusion on the exon (96%).
X
ABCC7 p.Asp443Tyr 12732620:84:11
status: NEW221 WT sequence position AA change Nucleotide mutants Exon 9ϩ SR protein matrices above thresholds Disruption of preexisting sites New sites created by the mutations SC35 SR40 SF2 SR55 % WT 65 A 15 C 65 T 16 ⌬ 96 T 18 G 95 3.38 (13) G 19 A 52 A 20 G 80 C 31 Q414X T 50 A 43 G 62 SR40 0.28 (41) A 44 N414S G 59 46t49t 67 SR40 1.43 (41) G 61 G424S A 31 C 58 66g67a69g 68 SR40-1.01 (66) 3.21 (63) 2.24 (64) C 72 G 18 2.20 (67) A 63 2.01 (69) G 118 D443Y T 68 A 65 120g122a123g 96 2.24 (118) T 122 I444S G 40 A 144 G 55 T 40 C 145 G 85 A 87 A 146 G 92 3.02 (146) 2.66 (141) T 94 3.23 (143) Q452P C 96 3.46 (143) ⌬ 97 2.81 (142) 3.03 (141) G 147 T 97 C 98 2.70 (142) 3.00 (144) 2.53 (143) T 148 G 26 2.99 (142) 4.05 (143) C 90 2.49 (143) 2.47 (145) A 93 3.46 (145) T 149 C 82 2.99 (144) 3.53 (145) G 150 A 50 3.38 (148) C 62 T 151 A 65 C 67 3.00 (146) 3.15 (148) G 153 C 65 T 42 2.76 (153) G 154 T 18 C 20 C 155 A455E A 15 1.98 (152) G 3 T 5 G 156 T 10 3.59 (153) C 40 3.82 (153) G 157 V456F T 65 G 164ϩ ins 14 regulatory sequences derived from SR-specific score matrices, and the creation of novel enhancer and silencer controlling elements.
X
ABCC7 p.Asp443Tyr 12732620:221:454
status: NEW[hide] The phenotypic consequences of CFTR mutations. Ann Hum Genet. 2003 Sep;67(Pt 5):471-85. Rowntree RK, Harris A
The phenotypic consequences of CFTR mutations.
Ann Hum Genet. 2003 Sep;67(Pt 5):471-85., [PMID:12940920]
Abstract [show]
Cystic fibrosis is a common autosomal recessive disorder that primarily affects the epithelial cells in the intestine, respiratory system, pancreas, gall bladder and sweat glands. Over one thousand mutations have currently been identified in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene that are associated with CF disease. There have been many studies on the correlation of the CFTR genotype and CF disease phenotype; however, this relationship is still not well understood. A connection between CFTR genotype and disease manifested in the pancreas has been well described, but pulmonary disease appears to be highly variable even between individuals with the same genotype. This review describes the current classification of CFTR mutation classes and resulting CF disease phenotypes. Complex disease alleles and modifier genes are discussed along with alternative disorders, such as disseminated bronchiectasis and pancreatitis, which are also thought to result from CFTR mutations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
184 The complex allele described contained three missense mutations, D443Y, G576A and R668C (Abramowicz et al. 2000).
X
ABCC7 p.Asp443Tyr 12940920:184:65
status: NEW187 It is therefore possible that the inclusion of the D443Y mutation resulted in the CF phenotype in these patients.
X
ABCC7 p.Asp443Tyr 12940920:187:51
status: NEW[hide] Rapid detection of CFTR gene rearrangements impact... J Med Genet. 2004 Nov;41(11):e118. Niel F, Martin J, Dastot-Le Moal F, Costes B, Boissier B, Delattre V, Goossens M, Girodon E
Rapid detection of CFTR gene rearrangements impacts on genetic counselling in cystic fibrosis.
J Med Genet. 2004 Nov;41(11):e118., [PMID:15520400]
Abstract [show]
Comments [show]
None has been submitted yet.
No. Sentence Comment
136 The subjects were divided into three groups according to the results of a previous screening: (i) 43 CF patients who fulfilled the diagnostic criteria of CF15 and who carried a CF mutation, and seven parents of deceased CF patients, a CF mutation having already been identified in the other parent (50 unidentified CF alleles); (ii) 12 CF patients with no identified CF mutation (24 unidentified CF alleles); and (iii) 16 patients apparently homozygous for a CFTR mutation and who had CF (F508del 2n = 6-, 2104insA22109del10, S945L, 3120+1GRA, N1303K) or a CFTR related disease, that is, isolated CBAVD (D110H, R117H, L997F, R74W-D1270N) or DB (R334W, R668C- G576A-D443Y) (0-16 unidentified CF alleles).
X
ABCC7 p.Asp443Tyr 15520400:136:665
status: NEW[hide] A large-scale study of the random variability of a... Eur J Hum Genet. 2005 Feb;13(2):184-92. Modiano G, Bombieri C, Ciminelli BM, Belpinati F, Giorgi S, Georges M, Scotet V, Pompei F, Ciccacci C, Guittard C, Audrezet MP, Begnini A, Toepfer M, Macek M, Ferec C, Claustres M, Pignatti PF
A large-scale study of the random variability of a coding sequence: a study on the CFTR gene.
Eur J Hum Genet. 2005 Feb;13(2):184-92., [PMID:15536480]
Abstract [show]
Coding single nucleotide substitutions (cSNSs) have been studied on hundreds of genes using small samples (n(g) approximately 100-150 genes). In the present investigation, a large random European population sample (average n(g) approximately 1500) was studied for a single gene, the CFTR (Cystic Fibrosis Transmembrane conductance Regulator). The nonsynonymous (NS) substitutions exhibited, in accordance with previous reports, a mean probability of being polymorphic (q > 0.005), much lower than that of the synonymous (S) substitutions, but they showed a similar rate of subpolymorphic (q < 0.005) variability. This indicates that, in autosomal genes that may have harmful recessive alleles (nonduplicated genes with important functions), genetic drift overwhelms selection in the subpolymorphic range of variability, making disadvantageous alleles behave as neutral. These results imply that the majority of the subpolymorphic nonsynonymous alleles of these genes are selectively negative or even pathogenic.
Comments [show]
None has been submitted yet.
No. Sentence Comment
33 In the Tajima`s test,19 the null hypothesis of neutrality is rejected if a statistically significant difference between p Common and rare nonsynonymous and synonymous cSNSs G Modiano et al European Journal of Human Genetics Table 1 List of the 61 cSNSsa encountered in the present survey The random samples of genes (and the technique utilized) cSNS variants found NE Italy (DGGE) Central Italy (DGGE) Southern France (DGGE) Northern France (DHPLC) Spain (SSCA) Czechia (DGGE) Hb  104 Exon Exon Length (bp) Ref. no. SNS SASc 1st 100d 2nd 500 1st 100d 2nde 1st 100d 2nd 500 1st 100 2nde 82d 72 Abs. Freq. Total sample size q  104 se  104 NSf Sf 1g 53 0 0 0 0 0/452 0 924 2 111 1 223C4T R31C 1 1 1/500 1 1 0 0/450 0 5 (11) 1 932 (2 432) 45.23 13.61 90 2 224G4T R31L 0 0 0/500 0 0 0 1/450 0 1 1 932 5.17 5.17 10 3 257C4T S42F 0 0 1/500 0 0 0 0/450 0 1 1 932 5.17 5.17 10 3 109 4 334A4G K68E 1 0 0 0/498 0 0 0 0/452 0 0 1 2 504 3.99 3.99 8 5 352C4T R74W 0 0 0 0/498 0 0 0 1/452 0 0 1 2 504 3.99 3.99 8 6 356G4A R75Q 1 7 1 7/498 2 9 2 9/452 0 2 40 (40) 2 504 (2 544) 157.23 24.66 310 7 386G4A G85E 0 0 1 1/498 0 0 0 0/452 0 0 2 2 504 7.99 5.65 16 4 216 8 482G4A R117H 0 0 0 0/292 0 2 0 1/456 0 0 3 2 302 13.03 7.52 26 9 528T4G I132M 0 0 0 0/292 0 0 0 1/456 0 0 1 2 302 4.34 4.34 8 10 575T4C I148T 1 2 0 1/292 0 0 0 1/456 0 1 6 2 302 26.06 10.63 52 5 90 11 640C4T R170C 0 0 0 0/6 0 0 1/448 0 1 1 436 6.96 6.96 14 12 641G4A R170H 1 1 0 0/6 0 0 2/448 0 4 (4) 1 436 (1 930) 20.73 10.35 41 6a 164 0 0 0/6 0 0 0/432 0 0 992 6b 126 0 0 0/6 0 0 0/454 0 942 7 247 0 0 0/6 0 0 0/796 0 1 284 8 93 13 1281G4A L383 0 0 0 0/6 0 0 1/456 0 0 1 1 516 6.60 6.60 13 9 183 14 1402G4A G424S 0 0 0/6 0 0 1/454 0 1 940 10.64 10.64 21 15 1459G4T D443Y 0 0 0/6 0 0 1/454 0 1 940 10.64 10.64 21 10 192 16 1540A4G M470Vh 42 197 30 37/96 39 199 (i) (i) 27 571(736) 1 484 (1 912) 3849.37 111.28 4 735 17 1598C4A S489X 0 0 0 0/96 0 0 0 1/796 0 1 2 374 4.21 4.21 8 18 1648A4G I506V 1 0 0 0/96 0 0 0 0/796 0 1 2 374 4.21 4.21 8 19 1655T4G F508C 0 1 0 0/96 0 0 0 1/796 0 2 2 038 8.42 5.96 17 20 1716G4A Q528 2 16 1 0/96 0 19 i I 5 43 (58) 1 478 (2 024) 286.56 37.08 557 11 95 21 1756G4T G542X 0 2 0 0/134 0 0 0/796 0 0 2 1 984 10.08 7.12 20 22 1764T4G G544 0 0 0 0/134 0 0 1/796 0 0 1 1 984 5.04 5.04 10 23 1784G4A G551D 0 0 0 0/134 0 0 1/796 0 0 1 1 984 5.04 5.04 10 12 87 24 1816G4A V562I 0 0 0 0 1 0 0/450 0 0 1 (1) 2 004 (2 504) 3.99 3.99 8 25 1816G4C V562L 0 0 0 1 0 0 1/450 0 0 2 (3) 2 004 (2 504) 11.98 6.91 24 26 1859G4C G576A 1 2 0 1 11 0 8/450 0 0 23 (27) 2 004 (2 538) 106.38 20.36 213 13 724j 449 27 1997G4A G622D 0 0 0/80 0/96 1 0 0 0/444 0 1 2 002 5.00 5.00 10 28 2082C4T F650 1 0 0/80 0/20 0 0 0 0/444 0 1 (1) 1 926 (2 412) 4.15 4.15 8 29 2134C4T R668C 1 2 0/80 0/96 1 11 0 12/444 0 27(32) 2 002 (2 558) 125.10 21.98 247 275 30 2377C4T L748 0 0 0/6 0 1 1 388 25.77 25.77 52 14a 129 31 2670G4A W846X 0 0 0/6 0 1 0/452 0/80 0 1 1 010 9.90 9.90 20 32 2694T4G T854 33 23 0/6 33 38 149/452 14/80 11 301 1 010 2980.20 143.92 4 184 33 2695G4A V855I 0 0 0/6 0 0 1/452 0/80 0 1 1 010 9.90 9.90 20 14b 38 0 0 0 0/520 0 0 0 0/446 0 2 448 15 251 34 2816G4C S895T 0 0 0/6 0 0 2/436 0 0 2 996 20.08 14.18 40 35 2831A4C N900T 0 0 0/6 0 0 1/436 0 0 1 996 10.04 10.04 20 36 2988G4C M952I 0 0 0/6 0 0 1/436 0 0 1 996 10.04 10.04 20 37 3030G4A T966 (2)k (1)k 0 6/436 0 6 (25)k 618 (1814)k 137.82 27.37 272 38 3032T4C L967S 0 0 0/6 0 0 1/436 0 0 1 996 10.04 10.04 20 16 80 0 0 0/498 0 0 0/450 0 0 1 502 17a 151 39 3123G4C L997F 0 2 2 1/494 0 7 1 4/454 0 0 17 2 502 67.95 16.42 135 40 3157G4A A1009T 0 2 0 0/494 0 0 0 0/454 0 0 2 2 502 7.99 5.65 16 41 3212T4C I1027T 1 0 0 0/494 0 0 0 0/454 0 0 1 2 502 4.00 4.00 8 17b 228 42 3286T4G F1052V 1 1 0 1/194 0 0 0 0/452 0 0 3 (3) 2 200 (2 240) 13.39 7.73 27 43 3337G4A G1069R 0 1 0 0/194 0 0 0 0/452 0 0 1 2 200 4.55 4.55 9 CommonandrarenonsynonymousandsynonymouscSNSs GModianoetal 186 EuropeanJournalofHumanGenetics 44 3345G4T Q1071H 0 0 0 0/194 0 1 0 0/452 0 0 1 2 200 4.55 4.55 9 45 3417A4T T1995 1 3 0 0/194 1 1 0 0/452 0 0 6 (8) 2 200 (2 506) 31.92 11.27 64 46 3419T4G L1096R 0 0 0 0/194 1 0 0 0/452 0 0 1 2 200 4.55 4.55 9 47 3477C4A T1115 0 0 0 0/194 0 0 0 1/452 0 0 1 2 200 4.55 4.55 9 18 101 48 3523A4G I1131V 0 0 1 0/10 0 0 0/448 0 0 1 (2) 1 512 (1 908) 10.48 7.07 21 49 3586G4C D1152H 0 0 0 0/10 0 0 1/448 0 0 1 1 512 6.61 6.61 13 19 249 50 3617G4T R1162L 0 0 1 1/494 0 0/260 0 0/454 0 0 2 2 262 8.84 6.25 18 51 3690A4G Q1186 0 0 0 0/494 0 0/260 0 0/454 1 0 1 2 262 4.42 4.42 9 52 3813A4G L1227 0 1 0 0/494 0 0/260 0 0/454 0 0 1 2 262 4.42 4.42 9 53 3837T4G S1235R 1 1 0 1/494 0 4/260 0 7/454 0 1 15 (15) 2 262 (2 310) 69.94 16.71 140 20 156 54 4002A4G P1290 2 3 0/6 3 5 18/454 3/80 2 36 1 012 357.73 58.22 690 21 90 55 4009G4A V1293I 0 0 0/6 0 0/300 0 1/456 0 0 1 1 316 7.60 7.60 15 56 4029A4G T1299 1 0 0/6 0 1/300 0 1/456 0 0 3 (8) 1 316 (2 330) 34.33 12.12 69 57 4041C4G N1303K 1 0 0/6 0 0/300 0 0/456 0 0 1 1 316 7.60 7.60 15 58 4085T4C V1318A 0 0 0/6 0 0/300 0 1/456 0 0 1 1 316 7.60 7.60 15 22 173 0 0 0/18 0 0 0/450 0 0 1 022 23 106 0 0 0 0/6 0 0 0/448 0 1 436 24l 198+3 59 4404C4T Y1424 1 0 0/6 1 2 5/420 0 2 11 (32) 980 (2 516) 127.19 22.34 251 60m 4521G4A Q1463 (21) (16) (3/32) (14/80) (30) (94/420) 15/76 (17) 15 (227) 76 (1052) 2142.86 131.07 3 367 61 4563T4C D1477 0 0 0/6 0 1 0/420 0 0 1 980 10.20 10.20 20 Totals 6 525 9 584 16 109 The bracketed figures include also the RFLP analysis data (see Materials and methods); the NE Italy, Central Italy, Southern and Northern France are each subdivided into two samples where the 1st is made up of 100 genes.
X
ABCC7 p.Asp443Tyr 15536480:33:1737
status: NEW[hide] Gender-sensitive association of CFTR gene mutation... Mol Hum Reprod. 2005 Aug;11(8):607-14. Epub 2005 Aug 26. Morea A, Cameran M, Rebuffi AG, Marzenta D, Marangon O, Picci L, Zacchello F, Scarpa M
Gender-sensitive association of CFTR gene mutations and 5T allele emerging from a large survey on infertility.
Mol Hum Reprod. 2005 Aug;11(8):607-14. Epub 2005 Aug 26., [PMID:16126774]
Abstract [show]
Human infertility in relation to mutations affecting the cystic fibrosis transmembrane regulator (CFTR) gene has been investigated by different authors. The role of additional variants, such as the possible forms of the thymidine allele (5T, 7T and 9T) of the acceptor splice site of intron 8, has in some instances been considered. However, a large-scale analysis of the CFTR gene and number of thymidine residues, alone and in combination, in the two sexes had not yet been addressed. This was the aim of this study. Two groups were compared, a control group of 20,532 subjects being screened for perspective reproduction, and the patient group represented by 1854 idiopathically infertile cases. Analyses involved PCR-based CFTR mutations assessment, reverse dot-blot IVS8-T polymorphism analyses, denaturing gradient gel electrophoresis (DGGE) and DNA sequencing. The expected 5T increase in infertile men was predominantly owing to the 5/9 genotypic class. The intrinsic rate of 5T fluctuated only slightly among groups, but some gender-related differences arose when comparing their association. Infertile men showed a significantly enriched 5T + CFTR mutation co-presence, distributed in the 5/9 and 5/7 classes. In contrast, females, from both the control and the infertile groups, showed a trend towards a pronounced reduction of such association. The statistical significance of the difference between expected and observed double occurrence of 5T + CFTR traits in women suggests, in line with other reports in the literature, a possible survival-hampering effect. Moreover, regardless of the 5T status, CFTR mutations appear not to be involved in female infertility. These results underline the importance of (i) assessing large sample populations and (ii) considering separately the two genders, whose genotypically opposite correlations with these phenomena may otherwise tend to mask each other.
Comments [show]
None has been submitted yet.
No. Sentence Comment
76 This test involved nine subjects from the infertile group, revealing the occurrence of the following rare mutations: E217G, T1054A, W356X, D443Y and 3667insTC in males and L997F and R297Q in females and 29 subjects from the control, in which we found: A1009T, D110Y, E826K, G1069R, G1130A, G194V, I556V, L320F, M348K, M82V, P1290T, R117C, R352W, R74W, S42F, S660T, S911R, S912L, T1086A, T582S, V920L and Y89C.
X
ABCC7 p.Asp443Tyr 16126774:76:139
status: NEW144 *Genotypes include subjects (whose number is indicated within parentheses) that carry the following CFTR mutations 2789+5G/A, E826K, ∆F508, D443Y, 3849+10Kb C/T 1717-8G/A and 3667insTCAA.
X
ABCC7 p.Asp443Tyr 16126774:144:147
status: NEW[hide] Detection of cystic fibrosis transmembrane conduct... Hum Reprod. 2007 May;22(5):1285-91. Epub 2007 Feb 28. Ratbi I, Legendre M, Niel F, Martin J, Soufir JC, Izard V, Costes B, Costa C, Goossens M, Girodon E
Detection of cystic fibrosis transmembrane conductance regulator (CFTR) gene rearrangements enriches the mutation spectrum in congenital bilateral absence of the vas deferens and impacts on genetic counselling.
Hum Reprod. 2007 May;22(5):1285-91. Epub 2007 Feb 28., [PMID:17329263]
Abstract [show]
BACKGROUND: Mutations in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene have been widely detected in infertile men with congenital bilateral absence of the vas deferens (CBAVD). Despite extensive analysis of the CFTR gene using varied screening methods, a number of cases remain unsolved and could be attributable to the presence of large gene rearrangements, as recently shown for CF patients. METHODS: We carried out a complete CFTR gene study in a group of 222 CBAVD patients with strict diagnosis criteria and without renal anomaly, and searched for rearrangements using a semi-quantitative assay in a subgroup of 61 patients. RESULTS: The overall mutation detection rate was 87.8%, and 82% of patients carried two mutations. Ten out of the 99 different mutations accounted for 74.6% of identified alleles. Four large rearrangements were found in patients who already carried a mild mutation: two known partial deletions (exons 17a to 18 and 22 to 23), a complete deletion and a new partial duplication (exons 11 to 13). The rearrangements accounted for 7% of the previously unknown alleles and 1% of all identified alleles. CONCLUSIONS: Screening for rearrangements should be part of comprehensive CFTR gene studies in CBAVD patients and may have impacts on genetic counselling for the patients and their families.
Comments [show]
None has been submitted yet.
No. Sentence Comment
50 CFTR mutations were detected in 387 out of 444 alleles (87.2%), most of them being previously described in patients with CF of varying severity, CBAVD or other CFTR diseases: 45% of identified alleles consisted of severe CF mutations (e.g. F508del, W1282X, 2183AA.G); 13.8% of mild or variable CF mutations (e.g. L206W, 3272-26A.G, R117H, D1152H); 36.7% of mild CFTR defects which are currently not considered CF-causing (e.g. IVS8(T)5, Q1352H, the complex alleles [D443Y;G576A;R668C] and [R74W;D1270N]) and 4.5% of rare missense mutations whose effect is difficult to predict (e.g. A959V, G1069R, V1153E).
X
ABCC7 p.Asp443Tyr 17329263:50:466
status: NEW69 Frequent cystic fibrosis transmembrane conductance regulator (CFTR) defects found in congenital bilateral absence of the vas deferens (CBAVD) patients (above 1% among the identified alleles) Mutation No. of alleles % of the 390 identified alleles F508dela 119 30.5 IVS8(T)5a,b 107 27.4 (TG)12(T)5 82 (TG)13(T)5 16 (TG)11(T)5b 9 R117Ha 25 6.4 R668C 9 2.3 [D443Y;G576A;R668C] 6 [G576A;R668C] 2 R668C 1 L206W 7 1.8 D1152H 6 1.5 W1282Xa 5 1.3 [V562I;(TG)11(T)5] 5 1.3 [R74W;D1270 N] 4 1.0 [R74W;D1270 N] 3 [R74W;V201M;D1270 N] 1 Q1352H(G .
X
ABCC7 p.Asp443Tyr 17329263:69:355
status: NEW83 2 [D443Y;G576A;R668C] þ [?]
X
ABCC7 p.Asp443Tyr 17329263:83:3
status: NEW[hide] Molecular characterization of the cystic fibrosis ... Genet Med. 2007 Mar;9(3):163-72. Grangeia A, Sa R, Carvalho F, Martin J, Girodon E, Silva J, Ferraz L, Barros A, Sousa M
Molecular characterization of the cystic fibrosis transmembrane conductance regulator gene in congenital absence of the vas deferens.
Genet Med. 2007 Mar;9(3):163-72., [PMID:17413420]
Abstract [show]
PURPOSE: Approximately 20% of patients with congenital absence of the vas deferens remain without two mutations identified. We applied a strategy of serial screening steps to 45 patients with congenital absence of the vas deferens and characterized cystic fibrosis transmembrane conductance regulator gene mutations in all cases. METHODS: DNA samples of 45 patients with congenital absence of the vas deferens were screened by successive different molecular genetics approaches. RESULTS: Initial screening for the 31 most frequent cystic fibrosis mutations, IVS8 poly(TG)m, poly(T)n, and M470V polymorphisms, identified 8 different mutations in 40 patients (88.9%). Extensive cystic fibrosis transmembrane conductance regulator gene analysis by denaturing gradient gel electrophoresis, denaturing high-performance liquid chromatography, and DNA sequencing detected 17 further mutations, of which three were novel. Cystic fibrosis transmembrane conductance regulator gene rearrangements were searched by semiquantitative fluorescent multiplex polymerase chain reaction, which detected a CFTRdele2,3 (21 kb) large deletion and confirmed two homozygous mutations. Overall, 42 patients (93.3%) had two mutations and 3 patients (6.7%) had one mutation detected. CONCLUSIONS: The present screening strategy allowed a higher mutation detection rate than previous studies, with at least one cystic fibrosis transmembrane conductance regulator gene mutation found in all patients with congenital absence of the vas deferens.
Comments [show]
None has been submitted yet.
No. Sentence Comment
85 Three mutations were found as complex alleles (two or three sequence alterations associated in cis on the same allele), each in two patients, G576A-R668C, D443Y-G576A-R668C, and S1235R-T5 (one patient with T5 in homozygosity) (Table 2).
X
ABCC7 p.Asp443Tyr 17413420:85:155
status: NEW94 a Missense mutations linked on the same allele, G576A-R688C and D443Y-G576A-R688C, were present in two patients with CBAVD each. CFTR mutations: severe (bold); novel (italics).
X
ABCC7 p.Asp443Tyr 17413420:94:64
status: NEW97 The allelic frequency of the other mutations was 4.4% for R117H, G576A, and R668C, 3.3% for S1235R and 3272-26A¡G, and 2.2% for P205S, L206W, D443Y, G542X, D614G, and N1301K, whereas the remaining 12 mutations were present in single patients (Table 3).
X
ABCC7 p.Asp443Tyr 17413420:97:147
status: NEW101 The missense M470V polymorphism was evaluated in all 45 pa- tientswithCAVD(Table2).TheallelicfrequencyoftheM470variant Table 2 CFTR genotypes identified in patients with congenital absence of the vas deferens CFTR mutation genotypes [(TG)mTn] genotype M470V Patients N % DeltaF508 (TG)10T9 (TG)12T5 M V 11 24.4 DeltaF508 (TG)10T9 (TG)11T5 M M 1 2.2 DeltaF508 R117H (TG)10T9 (TG)10T7 M M 2 4.4 G542X (TG)10T9 (TG)12T5 M V 2a 4.4 DeltaF508 R334W (TG)10T9 (TG)11T7 M V 1 2.2 DeltaF508 D443Y-G576A-R668C (TG)10T9 (TG)10T7 M M 1 2.2 DeltaF508 D614G (TG)10T9 (TG)11T7 M V 1 2.2 DeltaF508 E831X (TG)10T9 (TG)11T7 M V 1 2.2 DeltaF508 L1227S (TG)10T9 (TG)11T7 M M 1 2.2 DeltaF508 E1401K (TG)10T9 (TG)11T7 M V 1 2.2 I507del D614G (TG)11T7 (TG)10T7 M V 1 2.2 N1303K L206W (TG)10T9 (TG)9T9 M M 1 2.2 R117H P205S (TG)11T7 (TG)10T7 M V 1 2.2 R117H R334W (TG)10T7 (TG)11T7 M V 1 2.2 R334W P439S (TG)11T7 (TG)11T7 M V 1 2.2 R334W R334Wb (TG)11T7 (TG)11T7 V V 1 2.2 R334W V562I (TG)11T7 (TG)11T5 V M 1 2.2 D443Y-G576A-R668C 3272-26A¡G (TG)10T7 (TG)10T7 M M 1 2.2 G576A-R668C V754Mb (TG)10T7 (TG)11T7 M M 1 2.2 S1235R S1235Rb (TG)13T5 (TG)13T5 M M 1 2.2 2789ϩ5G¡A S1235Rb (TG)10T7 (TG)13T5 M M 1 2.2 3272-26A¡G P1290S (TG)11T7 (TG)10T7 M V 1 2.2 P205S (TG)11T7 (TG)12T5 V V 1 2.2 G576A-R668C b (TG)10T7 (TG)11T5 M M 1 2.2 V1108L b (TG)11T7 (TG)11T5 V M 1 2.2 N1303K (TG)10T9 (TG)12T5 M V 1 2.2 3272-26A¡G b (TG)10T7 (TG)12T5 M V 1 2.2 CFTRdele2,3 b (TG)11T7 (TG)13T5 V M 1 2.2 b (TG)11T5 (TG)12T5 M V 1 2.2 b (TG)13T5 (TG)12T5 M V 1 2.2 DeltaF508 - (TG)10T9 (TG)11T7 M V 1a 2.2 L206W -b (TG)9T9 (TG)11T7 M V 1 2.2 R258G -b (TG)11T7 (TG)11T7 V V 1 2.2 a CUAVD.
X
ABCC7 p.Asp443Tyr 17413420:101:482
status: NEWX
ABCC7 p.Asp443Tyr 17413420:101:989
status: NEW110 Large Table 3 Allelic frequencies of CFTR mutations in patients with congenital absence of the vas deferens CBAVD CUAVD Total Patients 42 3 45 Alleles 84 6 90 Mutations N % N % N % 1 T5 allele 26a 31 2 33.3 28 31.1 2 DeltaF508 20 23.8 1 16.7 21 23.3 3 R334W 6a 7.1 0 0 6 6.7 4 R117H 4 4.8 0 0 4 4.4 5 G576A 4b 4.8 0 0 4 4.4 6 R688C 4b 4.8 0 0 4 4.4 7 S1235R 3a 3.6 0 0 3 3.3 8 3272-26A¡G 3 3.6 0 0 3 3.3 9 P205S 2 2.4 0 0 2 2.2 10 L206W 2 2.4 0 0 2 2.2 11 D443Y 2b 2.4 0 0 2 2.2 13 D614G 2 2.4 0 0 2 2.2 14 N1303K 2 2.4 0 0 2 2.2 12 G542X 0 0 2 33.3 2 2.2 15 R258G 1 1.2 0 0 1 1.1 16 P439S 1 1.2 0 0 1 1.1 17 I507del 1 1.2 0 0 1 1.1 18 V562I 1 1.2 0 0 1 1.1 19 V754M 1 1.2 0 0 1 1.1 20 E831X 1 1.2 0 0 1 1.1 21 2789ϩ5G¡A 1 1.2 0 0 1 1.1 22 V1108L 1 1.2 0 0 1 1.1 23 L1227S 1 1.2 0 0 1 1.1 24 P1290S 1 1.2 0 0 1 1.1 25 E1401K 1 1.2 0 0 1 1.1 26 CFTRdele2,3 1 1.2 0 0 1 1.1 CBAVD, congenital bilateral absence of the vas deferens; CUAVD, congenital unilateral absence of the vas deferens.
X
ABCC7 p.Asp443Tyr 17413420:110:461
status: NEW112 b Missense mutations linked on the same allele, G576A-R688C and D443Y-G576A-R688C, were present in two patients with CBAVD each. CFTR gene rearrangements are not detectable using conventional PCR-based screening techniques, because the amplification of a nondeleted allele masks the lack of a PCR product corresponding to the deletion site.21,22,24 This detected a CFTRdele2,3 (21 kb) deletion in a Ukrainian emigrant with CBAVD and heterozygous for the T5 allele.
X
ABCC7 p.Asp443Tyr 17413420:112:64
status: NEW142 In fact, they occur in highly conserved regions of the CFTR protein, which share 100% amino acid sequence homology between species48 and affect the NBD1, NBD2, and transmembrane regions of the protein, which are known to regulate chloride conductance and permeability.49-51 P439S was previously reported in a child with CF with pancreatic insufficiency and mild lung disease, in association with the P439S/R688C genotype.52 The E1401K mutation occurs at a position in which other mutations, E1401X and E1401A, have been described in patients with CF with pancreatic insufficiency.8 Some difficulties in defining CF or CAVD-causing mutations were observed with some missense mutations.6,27 G576A and R668C have been found independently, in pairs, or combined with the D443Y mutation on the same chromosome in patients withaCF-relatedsyndrome.Inaccordancewithpreviousstudies, we expected that G576A and R668C were located in cis in two patients and combined with D443Y in the same chromosome in two patients.6,9,12 Although initially described as polymorphisms,27 they were later considered mild mutations associated with the CBAVD phenotype when combined in trans with the severedeltaF508mutation.53 However,ourpresentresultssuggest they might also cause the CAVD phenotype when associated with other mild CFTR mutations, because three of four patients carry- ingthesecomplexallelesharboredamildorverymildmutationin the other chromosome (D443Y-G576A-R668C/3272-26A¡G, Table 5 Comparative analysis of CFTR mutation allelic frequencies (%) in patients with congenital absence of the vas deferens Countries Patients T5 allele DeltaF508 R334W R117H References Argentina 36 NA 20.8 NA 5.6 43 Austria 22 NA 13.6 NA 9.1 44 Italy 12 8.3 29.2 NA 4.2 39 The Netherlands 21 9.5 19.0 NA 21.4 38 Germany 106 12.3 26.4 0.5 11.3 30 Greece 14 14.3 14.3 NA NA 32 France 800 16.3 21.8 NA 4.4 6 United States 92 17.9 21.2 NA 2.2 41 Canada 74 18.2 16.9 1.4 6.1 5 Turkey 51 19.6 2.9 NA NA 35 Brazil 17 20.6 11.7 NA 2.9 34 Spain 134 20.9 16.0 0.4 3.0 33 Iran 113 25.7 12.4 0.9 3.5 37 Egypt 16 43.7 6.2 NA NA 40 Taiwan 27 44.4 NA NA NA 42 Portugal 45 31.1 23.3 6.7 4.4 13, 36, PS NA, not available; PS, present study.
X
ABCC7 p.Asp443Tyr 17413420:142:767
status: NEWX
ABCC7 p.Asp443Tyr 17413420:142:961
status: NEWX
ABCC7 p.Asp443Tyr 17413420:142:1437
status: NEW143 G576A-R668C/V754M, G576A-R668C/T5), and only one case was associated with a severe mutation (DeltaF508del/D443Y-G576A-R668C).
X
ABCC7 p.Asp443Tyr 17413420:143:106
status: NEW[hide] Independent contribution of common CFTR variants t... Pancreas. 2010 Mar;39(2):209-15. de Cid R, Ramos MD, Aparisi L, Garcia C, Mora J, Estivill X, Farre A, Casals T
Independent contribution of common CFTR variants to chronic pancreatitis.
Pancreas. 2010 Mar;39(2):209-15., [PMID:19812525]
Abstract [show]
OBJECTIVE: We have assessed whether CFTR gene has a major impact on chronic pancreatitis (CP) pathogenesis than that provided by the CFTR mutations. For this aim, we have evaluated clinical parameters, CFTR mutations, and 3 potential regulatory CFTR variants (coding single-nucleotide polymorphisms): c.1540A>G, c.2694T>G, and c.4521G>A. METHODS: CFTR gene analysis was performed in a cohort of 136 CP patients and 93 controls from Spanish population using current scanning techniques (single-strand conformation polymorphism/heteroduplex, denaturing gradient gel electrophoresis, and denaturing high-performance liquid chromatography) and direct sequencing. RESULTS: A higher frequency of CFTR mutations were observed in patients (39%) than in controls (15%; P < or = 0.001), differences being mostly attributable to the prevalence of the cystic fibrosis (CF)-causing mutations (P = 0.009). The analysis of variants has shown statistically significant differences between patients and controls for c.4521G>A (Pcorrected = 0.036). Furthermore, the multi-marker analysis revealed that the 1540A;2694G;4521A (AGA) haplotype was more prevalent in CP than controls (Pcorrected = 0.042). Remarkably, this association was unrelated to CF-causing mutations (P = 0.006). CONCLUSIONS: Our results corroborate the higher susceptibility of CF carriers to CP and, furthermore, suggest that the AGA haplotype could contribute to an increased risk in the development of CP irrespective of other CF-causing mutations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
74 To simplify, as previously mentioned, the 4 CFTR-related disorderYassociated mutations, 5T-12TG, L997F, R297Q, and D443Y-G576A-R668C, have been grouped together with the CF-causing mutations in front of other CFTR mutations without or unknown clinical relevance13 (Table 3).
X
ABCC7 p.Asp443Tyr 19812525:74:115
status: NEW81 CFTR Genotypes in Chronic Pancreatitis Patients and General Population Pt/Phenotype CFTR Genotype Pt/Phenotype CFTR Genotype 1/ACP F508del† , I1027T/j 19/ACP* R668C/j 2/ACP* F508del† /j 20/ACP D836Y/j 3/ACP F508del† , I1027T/Y1014C 21/ACP* L997F† /j 4/ACP F508del† /1716G9A 22/ACP* R1162L/j 5/ACP* F508del† /1716G9A 23/ACP 5T-11TG/j 6/ACP* F508del† /S1235R 24/ACP 5T-11TG/j 7/ACP G542X† /j 25/ACP 5T-11TG/j 8/ACP* W1282X† /j 26/ACP* 5T-11TG/j 9/ACP 5T-12TG† /5T-11TG 27/ACP* 5T-11TG/j 10/ACP* 5T-12TG† /j 28/ACP 1716G9A/4374+13A9G 11/ACP R75Q/j 29/ACP 1716G9A/j 12/ACP R75Q/j 30/ACP 1716G9A/j 13/ACP Y122C/Y122C 31/ACP 1716G9A/j 14/ACP* R170C/j 32/ACP 1716G9A/j 15/ACP* R258G/j 33/ACP* 1716G9A/j 16/ACP* M281T/j 34/ACP 2377C9T/j 17/ACP* R297Q† /- 35/ACP* 2377C9T/j 18/ACP T351S/- 36/ACP 3499+37G9A/j 1/ICP F508del† /- 10/ICP* 1716G9A/j 2/ICP D443Y,G576A,R668C† /j 11/ICP* 1716G9A/j 3/ICP* D443Y,G576A,R668C† /j 12/ICP 1716G9A/j 4/ICP* P205S† /j 13/ICP* 1716G9A/j 5/ICP* L997F† /j 14/ICP* 1716G9A/j 6/ICP* R170H/1716G9A 15/ICP* 1716G9A/j 7/ICP 109A9G/j 16/ICP* 1716G9A/j 8/ICP* 5T-11TG/j 17/ICP 1716G9A/j 9/ICP* 5T-11TG/j 1/GP 5T-12TG† /j 8/GP 1716G9A/j 2/GP 5T-12TG† /j 9/GP 1716G9A/j 3/GP A534E† /j 10/GP 1716G/A/j 4/GP 5T-11TG/V562I 11/GP 1716G9A/j 5/GP 5T-11TG/j 12/GP 1716G9A/j 6/GP 5T-11TG/j 13/GP 3690A9G/j 7/GP 1716G9A/j 14/GP 3690A9G/j Corresponding mutation nomenclature (Human Genome Variation Society and Cystic Fibrosis Mutation Data Base): c.1584G9A (1716G9A), c.1210-7_1210-6delTT (5T), 1210-34_1210-13TG (11TG), g.-23A9G (109A9G), c.4242+13A9G (4374+13A9G), c.2245C9T (2377C9T), c.3367+ 37G9A (3499+37G9A), and c.3558A9G (3690A9G).
X
ABCC7 p.Asp443Tyr 19812525:81:933
status: NEWX
ABCC7 p.Asp443Tyr 19812525:81:987
status: NEW82 *Patients previously reported.12 † CF-causing mutations and mutations associated to CFTR-related disorders (5T-12TG, L997F, R297Q, and D443Y-G576A-R668C).
X
ABCC7 p.Asp443Tyr 19812525:82:142
status: NEW[hide] Do common in silico tools predict the clinical con... Clin Genet. 2010 May;77(5):464-73. Epub 2009 Jan 6. Dorfman R, Nalpathamkalam T, Taylor C, Gonska T, Keenan K, Yuan XW, Corey M, Tsui LC, Zielenski J, Durie P
Do common in silico tools predict the clinical consequences of amino-acid substitutions in the CFTR gene?
Clin Genet. 2010 May;77(5):464-73. Epub 2009 Jan 6., [PMID:20059485]
Abstract [show]
Computational methods are used to predict the molecular consequences of amino-acid substitutions on the basis of evolutionary conservation or protein structure, but their utility in clinical diagnosis or prediction of disease outcome has not been well validated. We evaluated three popular computer programs, namely, PANTHER, SIFT and PolyPhen, by comparing the predicted clinical outcomes for a group of known CFTR missense mutations against the diagnosis of cystic fibrosis (CF) and clinical manifestations in cohorts of subjects with CF-disease and CFTR-related disorders carrying these mutations. Owing to poor specificity, none of tools reliably distinguished between individual mutations that confer CF disease from mutations found in subjects with a CFTR-related disorder or no disease. Prediction scores for CFTR mutations derived from PANTHER showed a significant overall statistical correlation with the spectrum of disease severity associated with mutations in the CFTR gene. In contrast, PolyPhen- and SIFT-derived scores only showed significant differences between CF-causing and non-CF variants. Current computational methods are not recommended for establishing or excluding a CF diagnosis, notably as a newborn screening strategy or in patients with equivocal test results.
Comments [show]
None has been submitted yet.
No. Sentence Comment
64 Mutations in the CFTR gene grouped by clinical category Cystic fibrosis CFTR-related disease No disease T338I D614G L320V V920L L90S M470V H199R S1251N I203M G550R P111A I148T Q1291H R560K L1388Q L183I R170H I1027T S549R D443Y P499A L1414S T908N R668C S549N A455E E1401K Q151K G27E I1234L Y563N R347P C866R S1118C P1290S R75Q A559T V520F P841R M469V E1401G P67L G85E S50Y E1409K R933G G458V G178R Y1032C R248T I980K G85V V392G L973P L137H T351S R334W I444S V938G R792G R560T R555G L1339F D1305E P574H V1240G T1053I D58G G551D L1335P I918M F994C S945L L558S F1337V R810G D1152H G1247R P574S R766M D579G W1098R H949R F200I R352Q L1077P K1351E M244K L206W M1101K D1154G L375F N1303K R1066C E528D D110Y R347H R1070Q A800G P1021S S549K A1364V V392A damaging` (is supposed to affect protein function or structure) and 'probably damaging` (high confidence of affecting protein function or structure).
X
ABCC7 p.Asp443Tyr 20059485:64:221
status: NEW[hide] Combined bicarbonate conductance-impairing variant... Gastroenterology. 2011 Jan;140(1):162-71. Epub 2010 Oct 25. Schneider A, Larusch J, Sun X, Aloe A, Lamb J, Hawes R, Cotton P, Brand RE, Anderson MA, Money ME, Banks PA, Lewis MD, Baillie J, Sherman S, Disario J, Burton FR, Gardner TB, Amann ST, Gelrud A, George R, Rockacy MJ, Kassabian S, Martinson J, Slivka A, Yadav D, Oruc N, Barmada MM, Frizzell R, Whitcomb DC
Combined bicarbonate conductance-impairing variants in CFTR and SPINK1 variants are associated with chronic pancreatitis in patients without cystic fibrosis.
Gastroenterology. 2011 Jan;140(1):162-71. Epub 2010 Oct 25., [PMID:20977904]
Abstract [show]
BACKGROUND & AIMS: Idiopathic chronic pancreatitis (ICP) is a complex inflammatory disorder associated with multiple genetic and environmental factors. In individuals without cystic fibrosis (CF), variants of CFTR that inhibit bicarbonate conductance but maintain chloride conductance might selectively impair secretion of pancreatic juice, leading to trypsin activation and pancreatitis. We investigated whether sequence variants in the gene encoding the pancreatic secretory trypsin inhibitor SPINK1 further increase the risk of pancreatitis in these patients. METHODS: We screened patients and controls for variants in SPINK1 associated with risk of chronic pancreatitis and in all 27 exons of CFTR. The final study group included 53 patients with sporadic ICP, 27 probands with familial ICP, 150 unrelated controls, 375 additional controls for limited genotyping. CFTR wild-type and p.R75Q were cloned and expressed in HEK293 cells, and relative conductances of HCO(3)(-) and Cl(-) were measured. RESULTS: SPINK1 variants were identified in 36% of subjects and 3% of controls (odds ratio [OR], 18.1). One variant of CFTR not associated with CF, p.R75Q, was found in 16% of subjects and 5.3% of controls (OR, 3.4). Coinheritance of CFTR p.R75Q and SPINK1 variants occurred in 8.75% of patients and 0.38% of controls (OR, 25.1). Patch-clamp recordings of cells that expressed CFTR p.R75Q showed normal chloride currents but significantly reduced bicarbonate currents (P = .0001). CONCLUSIONS: The CFTR variant p.R75Q causes a selective defect in bicarbonate conductance and increases risk of pancreatitis. Coinheritance of p.R75Q or CF causing CFTR variants with SPINK1 variants significantly increases the risk of ICP.
Comments [show]
None has been submitted yet.
No. Sentence Comment
90 Also identified were 6 mutations (IVS8 T5, p.D443Y, p.G576A, p.F508C, p.I807M, p.M952T) reported to cause a milder form of CF or other CF-related diseases (such as congenital absence of the vas deferens), which we have categorized as CF mild.
X
ABCC7 p.Asp443Tyr 20977904:90:45
status: NEW92 Two peculiar mutations that occurred in both populations, c.1584GtoA (1716GtoA legacy name) and p.R75Q, have been generally regarded as benign sequence variations28 (www.genet.sickkids. on.ca) but repeatedly show association to CF-related diseases, pancreatitis,29-31 and some patients with atypical CF.32 Two individual nonsynonymous sequence changes, p.R668C and p.I148T, were identified with CFTR full sequencing in one control each but without additional mutations found in cis (p.D443Y ϩ p.G576A and c.3067del6 [ie, 3199del6], respectively).
X
ABCC7 p.Asp443Tyr 20977904:92:485
status: NEW[hide] Comprehensive description of CFTR genotypes and ul... Hum Genet. 2011 Apr;129(4):387-96. Epub 2010 Dec 24. de Becdelievre A, Costa C, Jouannic JM, LeFloch A, Giurgea I, Martin J, Medina R, Boissier B, Gameiro C, Muller F, Goossens M, Alberti C, Girodon E
Comprehensive description of CFTR genotypes and ultrasound patterns in 694 cases of fetal bowel anomalies: a revised strategy.
Hum Genet. 2011 Apr;129(4):387-96. Epub 2010 Dec 24., [PMID:21184098]
Abstract [show]
Fetal bowel anomalies may reveal cystic fibrosis (CF) and the search for CF transmembrane conductance regulator (CFTR) gene mutations is part of the diagnostic investigations in such pregnancies, according to European recommendations. We report on our 18-year experience to document comprehensive CFTR genotypes and correlations with ultrasound patterns in a series of 694 cases of fetal bowel anomalies. CFTR gene analysis was performed in a multistep process, including search for frequent mutations in the parents and subsequent in-depth search for rare mutations, depending on the context. Ultrasound patterns were correlated with the genotypes. Cases were distinguished according to whether they had been referred directly to our laboratory or after an initial testing in another laboratory. A total of 30 CF fetuses and 8 cases compatible with CFTR-related disorders were identified. CFTR rearrangements were found in 5/30 CF fetuses. 21.2% of fetuses carrying a frequent mutation had a second rare mutation, indicative of CF. The frequency of CF among fetuses with no frequent mutation was 0.43%. Correlation with ultrasound patterns revealed a significant frequency of multiple bowel anomalies in CF fetuses. The results emphasize the need to search for rearrangements in the diagnosis strategy of fetal bowel anomalies. The diagnostic value of ultrasound patterns combining hyperechogenic bowel, loop dilatation and/or non-visualized gallbladder reveals a need to revise current strategies and to offer extensive CFTR gene testing when the triad is diagnosed, even when no frequent mutation is found in the first-step analysis.
Comments [show]
None has been submitted yet.
No. Sentence Comment
192 [D443Y;G576A;R668C] c.[3909C[G]?
X
ABCC7 p.Asp443Tyr 21184098:192:1
status: NEW275 Screening for frequent mutations refers to use of a commercial kit Identification of CFTR-RD mutations, mutations of unknown significance and questionable cases makes genetic counseling delicate As rarely reported (Abramowicz et al. 2000), mild or CFTR-RD associated mutations might be found incidentally while searching for CF-causing defects, in particular when one CF mutation has been identified, as was the case in our study for the splicing T5 variant of intron 8 (c.1210-12T[5]), S1235R (p.Ser1235Arg, c.3705T[G), or the complex [D443Y;G576A;R668C] allele(p.
X
ABCC7 p.Asp443Tyr 21184098:275:539
status: NEW276 [Asp443Tyr; Gly576Ala;Arg668Cys], c.[1327G[T;1727G[C;2002C[T]).
X
ABCC7 p.Asp443Tyr 21184098:276:1
status: NEW[hide] Recommendations for the classification of diseases... J Cyst Fibros. 2011 Jun;10 Suppl 2:S86-102. Bombieri C, Claustres M, De Boeck K, Derichs N, Dodge J, Girodon E, Sermet I, Schwarz M, Tzetis M, Wilschanski M, Bareil C, Bilton D, Castellani C, Cuppens H, Cutting GR, Drevinek P, Farrell P, Elborn JS, Jarvi K, Kerem B, Kerem E, Knowles M, Macek M Jr, Munck A, Radojkovic D, Seia M, Sheppard DN, Southern KW, Stuhrmann M, Tullis E, Zielenski J, Pignatti PF, Ferec C
Recommendations for the classification of diseases as CFTR-related disorders.
J Cyst Fibros. 2011 Jun;10 Suppl 2:S86-102., [PMID:21658649]
Abstract [show]
Several diseases have been clinically or genetically related to cystic fibrosis (CF), but a consensus definition is lacking. Here, we present a proposal for consensus guidelines on cystic fibrosis transmembrane conductance regulator (CFTR)-related disorders (CFTR-RDs), reached after expert discussion and two dedicated workshops. A CFTR-RD may be defined as "a clinical entity associated with CFTR dysfunction that does not fulfil diagnostic criteria for CF". The utility of sweat testing, mutation analysis, nasal potential difference, and/or intestinal current measurement for the differential diagnosis of CF and CFTR-RD is discussed. Algorithms which use genetic and functional diagnostic tests to distinguish CF and CFTR-RDs are presented. According to present knowledge, congenital bilateral absence of vas deferens (CBAVD), acute recurrent or chronic pancreatitis and disseminated bronchiectasis, all with CFTR dysfunction, are CFTR-RDs.
Comments [show]
None has been submitted yet.
No. Sentence Comment
138 [D443Y;G576A;R668C], p.
X
ABCC7 p.Asp443Tyr 21658649:138:1
status: NEW[hide] CFTR mutation combinations producing frequent comp... Hum Mutat. 2012 Nov;33(11):1557-65. doi: 10.1002/humu.22129. Epub 2012 Jul 2. El-Seedy A, Girodon E, Norez C, Pajaud J, Pasquet MC, de Becdelievre A, Bienvenu T, des Georges M, Cabet F, Lalau G, Bieth E, Blayau M, Becq F, Kitzis A, Fanen P, Ladeveze V
CFTR mutation combinations producing frequent complex alleles with different clinical and functional outcomes.
Hum Mutat. 2012 Nov;33(11):1557-65. doi: 10.1002/humu.22129. Epub 2012 Jul 2., [PMID:22678879]
Abstract [show]
Genotype-phenotype correlations in cystic fibrosis (CF) may be difficult to establish because of phenotype variability, which is associated with certain CF transmembrane conductance regulator (CFTR) gene mutations and the existence of complex alleles. To elucidate the clinical significance of complex alleles involving p.Gly149Arg, p.Asp443Tyr, p.Gly576Ala, and p.Arg668Cys, we performed a collaborative genotype-phenotype correlation study, collected epidemiological data, and investigated structure-function relationships for single and natural complex mutants, p.[Gly576Ala;Arg668Cys], p.[Gly149Arg;Gly576Ala;Arg668Cys], and p.[Asp443Tyr;Gly576Ala;Arg668Cys]. Among 153 patients carrying at least one of these mutations, only three had classical CF and all carried p.Gly149Arg in the triple mutant. Sixty-four had isolated infertility and seven were healthy individuals with a severe mutation in trans, but none had p.Gly149Arg. Functional studies performed on all single and natural complex mutants showed that (1) p.Gly149Arg results in a severe misprocessing defect; (2) p.Asp443Tyr moderately alters CFTR maturation; and (3) p.Gly576Ala, a known splicing mutant, and p.Arg668Cys mildly alter CFTR chloride conductance. Overall, the results consistently show the contribution of p.Gly149Arg to the CF phenotype, and suggest that p.[Arg668Cys], p.[Gly576Ala;Arg668Cys], and p.[Asp443Tyr;Gly576Ala;Arg668Cys] are associated with CFTR-related disorders. The present study emphasizes the importance of comprehensive genotype-phenotype and functional studies in elucidating the impact of mutations on clinical phenotype. Hum Mutat 33:1557-1565, 2012. (c) 2012 Wiley Periodicals, Inc.
Comments [show]
None has been submitted yet.
No. Sentence Comment
2 To elucidate the clinical significance of complex alleles involving p.Gly149Arg, p.Asp443Tyr, p.Gly576Ala, and p.Arg668Cys, we performed a collaborative genotype-phenotype correlation study, collected epidemiological data, and investigated structure-function relationships for single and natural complex mutants, p.[Gly576Ala;Arg668Cys], p.[Gly149Arg; Gly576Ala;Arg668Cys], and p.[Asp443Tyr;Gly576Ala; Arg668Cys].
X
ABCC7 p.Asp443Tyr 22678879:2:83
status: NEWX
ABCC7 p.Asp443Tyr 22678879:2:381
status: NEW5 Functional studies performed on all single and natural complex mutants showed that (1) p.Gly149Arg results in a severe misprocessing defect; (2) p.Asp443Tyr moderately alters CFTR maturation; and (3) p.Gly576Ala, a known splicing mutant, and p.Arg668Cys mildly alter CFTR chloride conductance.
X
ABCC7 p.Asp443Tyr 22678879:5:147
status: NEW6 Overall, the results consistently show the contribution of p.Gly149Arg to the CF phenotype, and suggest that p.[Arg668Cys], p.[Gly576Ala;Arg668Cys], and p.[Asp443Tyr;Gly576Ala;Arg668Cys] are associated with CFTR-related disorders.
X
ABCC7 p.Asp443Tyr 22678879:6:156
status: NEW21 These C 2012 WILEY PERIODICALS, INC. mutations have been further described in isolation, in association within complex alleles, and together with c.1327G>T, p.Asp443Tyr (D443Y) or c.445G>A, p.Gly149Arg (G149R) as triple mutants, notably in infertile patients with a congenital bilateral absence of the vas deferens (CBAVD) but also in patients with CF [Abramowicz et al., 2000; Bienvenu et al., 1997; Chillon et al., 1995a; Costes et al., 1995; Mercier et al., 1995; Pignatti et al., 1995; Ratbi et al., 2007; CFMD].
X
ABCC7 p.Asp443Tyr 22678879:21:160
status: NEWX
ABCC7 p.Asp443Tyr 22678879:21:171
status: NEW24 We thus implemented a collaborative study through the FrenchCFLaboratoryNetworktocollectallpatientsandindividuals carrying p.Asp443Tyr, p.Gly576Ala, p.Arg668Cys, and p.Gly149Arg, either in isolation or in complex alleles, and gathered epidemiological data on these mutations from the general population of France.
X
ABCC7 p.Asp443Tyr 22678879:24:125
status: NEW26 Materials and Methods Patients and Healthy Individuals Patients and healthy individuals known to the French CF Laboratory Network before 1st January 2009, who were heterozygous for the p.Asp443Tyr, p.Gly576Ala, p.Arg668Cys, and p.Gly149Arg mutations, either in isolation or in a complex allele, were included.
X
ABCC7 p.Asp443Tyr 22678879:26:187
status: NEW31 Epidemiological Study in the French General Population The allelic prevalences of the p.Asp443Tyr, p.Gly576Ala, p.Arg668Cys, and p.Gly149Arg mutations, either in isolation or in a complex allele, were determined by allele counting in a sample of healthy adult individuals from the French general population.
X
ABCC7 p.Asp443Tyr 22678879:31:88
status: NEW44 Specific substitutions observed either in isolation (p.Gly149Arg, p.Asp443Tyr, p.Gly576Ala, and p.Arg668Cys) or in different combinations in patients were introduced into the WT CFTR plasmid using the Gene tailor site-directed mutagenesis kit (Invitrogen) and the designed primers (available upon request), in accordance with the manufacturer`s protocol (Fig. 1).
X
ABCC7 p.Asp443Tyr 22678879:44:68
status: NEW91 Results Phenotype of Patients Carrying p.Asp443Tyr, p.Gly576Ala, p.Arg668Cys, and/or p.Gly149Arg in Various Combinations A total of 153 patients and healthy individuals carrying at least one of the alleles p.Asp443Tyr, p.Gly576Ala, p.Arg668Cys, and/or p.Gly149Arg, either in isolation or in a complex allele, were identified (Table 1).
X
ABCC7 p.Asp443Tyr 22678879:91:41
status: NEWX
ABCC7 p.Asp443Tyr 22678879:91:208
status: NEW95 Phenotype and Genotype Data of Patients Carrying At Least One of the CFTR Gene Mutations p.Gly549Arg, p.Asp443Tyr, p.Gly576Ala, and p.Arg668Cys Phenotype CFTR genotype No.
X
ABCC7 p.Asp443Tyr 22678879:95:104
status: NEW104 [2002C>T;3718-2477C>T] (3849+10kbC>T) p.Glu92Asn 2 DB 60 y, 71 y NA p.[Gly576Ala;Arg668Cys] p.Phe508del 1 DB Pa infections 20 y 67 p.[Asp443Tyr;Gly576Ala;Arg668Cys] p.[Gly576Ala;Arg668Cys] 1 DB 17 y <40 p.[Gly576Ala;Arg668Cys] NI 1 DB 26 y 23-71 p.[Gly576Ala;Arg668Cys] p.Leu997Phe 1 DB Pa infections 72 y 34-60 p.[Gly576Ala;Arg668Cys] NI 1 DB Azoospermia NA NA p.Arg668Cys NI 1 DB 66 y 80-87 p.[Asp443Tyr;Gly576Ala;Arg668Cys] c.262_263delTT (394delTT) 1 CSD ENT 19 y NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] p.Phe508del 1 CSD Bronchitis 48 y NA p.[Gly576Ala;Arg668Cys] p.Phe508del 1 CSD Sinusitis, bronchiolitis 72 y NA p.[Gly576Ala;Arg668Cys] p.Phe508del 1 CSD Nasal polyposis 18 y >60 c.
X
ABCC7 p.Asp443Tyr 22678879:104:134
status: NEWX
ABCC7 p.Asp443Tyr 22678879:104:396
status: NEWX
ABCC7 p.Asp443Tyr 22678879:104:474
status: NEW105 [2002C>T;3718-2477C>T] p.Gln689X 2 CSD Nasal polyposis 14 y,16 y NA, 29 p.[Gly576Ala;Arg668Cys] NI 3 IP 35-39 y NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] NI 1 IP Bronchitis 49 y NA p.[Gly576Ala;Arg668Cys] p.PheF508del 1 IP 42 y NA p.[Gly576Ala;Arg668Cys] p.Arg668Cys 1 IP NA NA p.[Gly576Ala;Arg668Cys] c.1210_34TG[12]T[5] 4 IP 19-69 y NA p.[Gly576Ala;Arg668Cys] NI 1 Cholestasis 60 y NA p.[Gly576Ala;Arg668Cys] c.1584G>A 33 CBAVD 27-50 y 9-82 p.[Asp443Tyr;Gly576Ala;Arg668Cys] p.Phe508del 2 CBAVD 30 y,36 y NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] c.2051_2052delAAinsG 1 CBAVD 34 y 72 p.[Asp443Tyr;Gly576Ala;Arg668Cys] p.Trp1282X 1 CBAVD NA NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] p.Asn1303Lys 1 CBAVD 35 y 65-66 p.[Asp443Tyr;Gly576Ala;Arg668Cys] p.Ser549Asn 1 CBAVD NA NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] c.3605delA 1 CBAVD 30 y 41-69 p.[Asp443Tyr;Gly576Ala;Arg668Cys] p.Gln1411X 1 CBAVD 31 y NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] p.Arg347His 3 CBAVD 29 y, 34 y, NA NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] p.Gly542X 1 CBAVD 35 y NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] c.946delT 1 CBAVD 26 y NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] c.4242_4242+1delGGinsT 1 CBAVD 41 y 31 p.[Asp443Tyr;Gly576Ala;Arg668Cys] p.Arg117His 1 CBAVD 32 y NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] p.Thr338Ile 1 CBAVD NA NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] p.Glu379Lys 1 CBAVD NA NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] p.Met1137Val 1 CBAVD NA NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] p.Thr1246Ile 2 CBAVD NA NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] NI 1 CBAVD 34 NA p.[Gly576Ala;Arg668Cys] p.Asn1303Lys 8 CBAVD 30-42 y NA p.[Gly576Ala;Arg668Cys] NI 1 CBAVD 27 y NA p.Arg668Cys p.Phe508del 1 CBAVD 30 y NA p.Arg668Cys NI 1 CUAVD NA NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] p.Phe508del 1 CUAVD NA NA p.[Gly576Ala;Arg668Cys] NI 1 CUAVD Renal agenesis NA NA p.[Gly576Ala;Arg668Cys] NI 1 Hypofertility (not CBAVD) CF carrier`s partner NA NA p.[Gly576Ala;Arg668Cys] p.Asp1152His 1 FBA Mild CF considered possible, 2 older brothers with the same genotype, one with a very mild phenotype, the other being asymptomatic 22 wg NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] p.Asn1303Lys 1 FBA TOP for de novo chromosomal translocation; not CF 21 wg NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] p.Arg31Cys 1 FBA Not CF at birth 28 wg <30 p.[Gly576Ala;Arg668Cys] p.Phe508del 1 FBA Unknown outcome 23 wg NA p.[Gly576Ala;Arg668Cys] p.Phe508del 1 FBA Not CF at birth 21 wg <30 p.[Gly576Ala;Arg668Cys] p.Trp846X (Continued) Table 1.
X
ABCC7 p.Asp443Tyr 22678879:105:118
status: NEWX
ABCC7 p.Asp443Tyr 22678879:105:441
status: NEWX
ABCC7 p.Asp443Tyr 22678879:105:508
status: NEWX
ABCC7 p.Asp443Tyr 22678879:105:579
status: NEWX
ABCC7 p.Asp443Tyr 22678879:105:638
status: NEWX
ABCC7 p.Asp443Tyr 22678879:105:704
status: NEWX
ABCC7 p.Asp443Tyr 22678879:105:764
status: NEWX
ABCC7 p.Asp443Tyr 22678879:105:828
status: NEWX
ABCC7 p.Asp443Tyr 22678879:105:889
status: NEWX
ABCC7 p.Asp443Tyr 22678879:105:961
status: NEWX
ABCC7 p.Asp443Tyr 22678879:105:1021
status: NEWX
ABCC7 p.Asp443Tyr 22678879:105:1081
status: NEWX
ABCC7 p.Asp443Tyr 22678879:105:1154
status: NEWX
ABCC7 p.Asp443Tyr 22678879:105:1216
status: NEWX
ABCC7 p.Asp443Tyr 22678879:105:1276
status: NEWX
ABCC7 p.Asp443Tyr 22678879:105:1336
status: NEWX
ABCC7 p.Asp443Tyr 22678879:105:1397
status: NEWX
ABCC7 p.Asp443Tyr 22678879:105:1458
status: NEWX
ABCC7 p.Asp443Tyr 22678879:105:1677
status: NEWX
ABCC7 p.Asp443Tyr 22678879:105:2058
status: NEWX
ABCC7 p.Asp443Tyr 22678879:105:2170
status: NEW107 of patients Main diagnosis Additional information Age at diagnosis Sweat test (Cl-,mmol/L) Allele 1 Allele 2 1 FBA Fetal death 20 wg NA p.[Gly576Ala;Arg668Cys] p.Ser1235Arg 1 FBA Unknown outcome p.Arg668Cys p.Phe508del 1 FBA Not CF at birth 38 wg NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] NI 1 FBA Not CF at birth 28 wg NA p.[Gly576Ala;Arg668Cys] NI 1 Healthy CF patient`s mother NA NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] p.Phe508del 1 Healthy Newborn, elevated IRT but normal ST (not CF) Birth <30 p.[Gly576Ala;Arg668Cys] p.Phe508del 1 Healthy Mother of a CF fetus (p.[Phe508del]+ [phe508del]) NA NA p.[Gly576Ala;Arg668Cys] p.Phe508del 1 Healthy Mother of a fetus with FBA but not affected with CF NA NA p.[Gly576Ala;Arg668Cys] p.Phe508del 2 Healthy Mother of a fetus with FBA but not affected with CF NA NA p.[Gly576Ala;Arg668Cys] NI 1 Healthy CF patient`s mother 59 y NA p.[Gly576Ala;Arg668Cys] p.Phe508del 1 Healthy CF patient`s mother NA NA p.[Gly576Ala;Arg668Cys] p.[Ser912Leu;Asn1303Lys] 1 Healthy CF patient`s mother 32 y NA p.[Gly576Ala;Arg668Cys] p.Leu137Arg 1 Healthy CF carrier`s partner NA NA p.[Gly576Ala;Arg668Cys] c.
X
ABCC7 p.Asp443Tyr 22678879:107:253
status: NEWX
ABCC7 p.Asp443Tyr 22678879:107:384
status: NEW108 [3705T>G;1210-13T[5]] 1 Healthy CF carrier`s partner NA NA p.[Ser519Gly;Gly576Ala;Arg668Cys] NI 2 Healthy CF carrier`s partner 37 y, NA NA p.[Asp443Tyr;Gly576Ala;Arg668Cys] NI 20 Healthy CF carrier`s partner 24-42 y NA p.[Gly576Ala;Arg668Cys] NI 1 Healthy CF carrier`s partner 32 y NA p.Gly576Ala NI 1 Healthy CF patient`s mother 37 y NA p.Arg668Cys p.Arg792X 1 Healthy CF relative (p.Gly745X) 22 y NA p.Arg668Cys NI 1 Healthy General population NA NA p.[Gly576Ala;Arg668Cys] NI CF, cystic fibrosis; CF?, suspicion of cystic fibrosis; CBAVD, congenital bilateral absence of vas deferens; CSD, chronic sinus disease; DB, disseminated bronchiectasis; ENT, ear, nose, and throat symptoms; FBA, fetal bowel anomaly; GI, gastrointestinal symptoms; IP, idiopathic pancreatitis; IRT, immunoreactive trypsinemia; m, months; NA, not available; NI, not identified; P, pulmonary symptoms; Pa: Pseudomonas aeruginosa; PI, pancreatic insufficiency; wg, weeks of gestation; ST, sweat test; TOP, termination of pregnancy; y, years.
X
ABCC7 p.Asp443Tyr 22678879:108:142
status: NEW113 The most frequent phenotype associated with combinations of p.Asp443Tyr, p.Gly576Ala, and p.Arg668Cys was CBAVD.
X
ABCC7 p.Asp443Tyr 22678879:113:62
status: NEW117 Outcome was known for seven out of nine cases: (1) one baby, with the triple mutant p.[Asp443Tyr;Gly576Ala;Arg668Cys], was considered possibly affected with mild CF or CFTR-RD at the time of analysis.
X
ABCC7 p.Asp443Tyr 22678879:117:87
status: NEW120 Of the 37 healthy individuals, seven had a severe CF mutation in trans; one carried the triple mutant p.[Asp443Tyr;Gly576Ala;Arg668Cys]; five carried the double mutant p.[Gly576Ala;Arg668Cys]; and one carried p.Arg668Cys in isolation.
X
ABCC7 p.Asp443Tyr 22678879:120:105
status: NEW121 These observations in patients carrying varied combinations of p.Arg668Cys, p.Gly576Ala, p.Asp443Tyr in trans with a classical CF mutation argue against as considering them as CF defects, but as CFTR-RD-associated mutations.
X
ABCC7 p.Asp443Tyr 22678879:121:91
status: NEW122 Epidemiological Data from the French General Population Of the 1,423 healthy individuals screened, 26 were heterozygous for p.[Gly576Ala;Arg668Cys] (allelic frequency 0.91%, 95% CI 0.60-1.33%); four for p.[Asp443Tyr;Gly576Ala;Arg668Cys] (allelic frequency 0.14%, 95% CI 0.04-0.36%); two for p.Arg668Cys; two for p.Gly576Ala (allelic frequency for each 0.07%, 95% CI 0.0080.25%); and one for p.[Ser519Gly;Gly576Ala;Arg668Cys] (allelic frequency 0.04%, 95% CI 0.0009-0.20%).
X
ABCC7 p.Asp443Tyr 22678879:122:206
status: NEW125 Processing of CFTR Mutants To evaluate the contribution of each mutation to the phenotype, we first studied the maturation of CFTR in HeLa cells that had been transiently transfected with cDNA encoding the WT and mutated CFTR proteins p.Gly149Arg, p.Asp443Tyr, p.Gly576Ala, and p.Arg668Cys in different combinations.
X
ABCC7 p.Asp443Tyr 22678879:125:250
status: NEW132 A: Western blot analysis of the CFTR expression: 1, WT; 2, p.Gly576Ala; 3, p.Arg668Cys; 4, p.[Gly576Arg;Arg668Cys]; 5, p.[Asp443Tyr;Gly576Ala;Arg668Cys]; 6, pTracer; 7, p.Asp443Tyr.
X
ABCC7 p.Asp443Tyr 22678879:132:122
status: NEWX
ABCC7 p.Asp443Tyr 22678879:132:171
status: NEW141 Lower amounts of mature p.Asp443Tyr and p.[Asp443Tyr;Gly576Ala;Arg668Cys] proteins were detected, with a decrease in proportion of band C (ratio band C/(band B + band C): 56.9% vs. 83.5 for the WT (Fig. 2A).
X
ABCC7 p.Asp443Tyr 22678879:141:26
status: NEWX
ABCC7 p.Asp443Tyr 22678879:141:43
status: NEW146 As shown in Figure 3, p.Gly576Ala, p.Arg668Cys, p.Asp443Tyr, p.[Gly576Ala;Arg668Cys], and p.[Asp443Tyr;Gly576Ala;Arg668Cys] were targeted to the plasma membrane (Figs. 3B-F).
X
ABCC7 p.Asp443Tyr 22678879:146:50
status: NEWX
ABCC7 p.Asp443Tyr 22678879:146:93
status: NEW147 The p.Asp443Tyr mutants (single ortriple)alsoshowedanintenseperinuclearstainingcomparedwith the WT CFTR protein (Figs. 3D and 3F).
X
ABCC7 p.Asp443Tyr 22678879:147:6
status: NEW148 Thus, p.Asp443Tyr seemed to be more perinuclear than p.[Asp443Tyr;Gly576Ala;Arg668Cys], and this result is consistent with the Western blotting results and a partial block in CFTR trafficking.
X
ABCC7 p.Asp443Tyr 22678879:148:8
status: NEWX
ABCC7 p.Asp443Tyr 22678879:148:56
status: NEW151 Functional Analysis of Chloride Channel Function in CFTR Mutants To determine the impact of p.Gly149Arg, p.Asp443Tyr, p.Gly576Ala, and p.Arg668Cys in single, double, or triple mutants on CFTR chloride channel function, we expressed full-length WT and mutant proteins in HeLa cells, and measured chloride channel activity using single-cell fluorescence imaging and the potential-sensitive probe DiSBAC2(3)(Molecular Probes).
X
ABCC7 p.Asp443Tyr 22678879:151:107
status: NEW152 The CFTR Cl- channel conductance was detected at the plasma membrane in WT CFTR and mutants containing p.Asp443Tyr, p.Gly576Ala, and p.Arg668Cys, whereas no conductance was observed in cells transfected with either GFP negative control or p.Phe508del protein (Figs. 4A and 4B).
X
ABCC7 p.Asp443Tyr 22678879:152:105
status: NEW154 The activity of the p.Asp443Tyr and WT channels was similar.
X
ABCC7 p.Asp443Tyr 22678879:154:22
status: NEW160 Discussion In the present study, we investigated genotype-phenotype correlations and the in vitro consequences of CFTR mutations: four in isolation (i.e., p.Gly149Arg, p.Asp443Tyr, p.Gly576Ala, and p.Arg668Cys) and three complex alleles observed in patients or healthy individuals (i.e., p.[Gly576Ala;Arg668Cys], p.[Asp443Tyr;Gly576Ala;Arg668Cys], and the rarer p.[Gly149Arg; Gly576Ala;Arg668Cys]).
X
ABCC7 p.Asp443Tyr 22678879:160:170
status: NEWX
ABCC7 p.Asp443Tyr 22678879:160:316
status: NEW165 A: Wild-type CFTR; B: p.Gly576Ala; C: p.Arg668Cys; D: p.Asp443Tyr; E: p.[Gly576Ala;Arg668Cys], F: p.[Asp443Tyr;Gly576Ala;Arg668Cys] are targeted at least to the plasma membrane.
X
ABCC7 p.Asp443Tyr 22678879:165:56
status: NEWX
ABCC7 p.Asp443Tyr 22678879:165:101
status: NEW173 In contrast, genotypes combining mutants other than p.Gly149Arg, namely p.Arg668Cys, p.[Gly576Ala;Arg668Cys], and p.[Asp443Tyr;Gly576Ala;Arg668Cys], in trans with a CF mutation, were not observed in patients with classical CF, although they were observed in patients with moderate phenotypes, in particular CBAVD.
X
ABCC7 p.Asp443Tyr 22678879:173:117
status: NEW175 This observation is also consistent with the results of the functional studies, which demonstrated residual CFTR function, with p.Asp443Tyr having an effect on protein maturation, and p.Gly576Ala and p.Arg668Cys having an effect on Cl- channel activity.
X
ABCC7 p.Asp443Tyr 22678879:175:130
status: NEW178 This was corroborated by the observation that additional, different mutations occurred on this haplotype (p.Asp443Tyr, p.Gly149Arg, and p.Ser519Gly, the latter being observed only once in the sample from the general population).
X
ABCC7 p.Asp443Tyr 22678879:178:108
status: NEW179 These results have substantial implications for diagnostic and genetic counseling, as they classify p.[Gly149Arg;Gly576Ala;Arg668Cys] or p.Gly149Arg (even if no CF patient was detected with only this mutation) as a CF-causing mutation, and p.Arg668Cys, p.[Gly576Ala;Arg668Cys], and p.[Asp443Tyr;Gly576Ala;Arg668Cys] as CFTR-RD mutations.
X
ABCC7 p.Asp443Tyr 22678879:179:285
status: NEW190 Statistical significance was set at *** P < 0.001; ** P < 0.01; * P < 0.05; ns, nonsignificant difference (P > 0.05).B-D:Histogramsreportthemeansoftherelativefluorescencecollectedfromseparateexperiments.B:HeLacellstransfectedwithWTCFTRas positive control, p.F508del or GFP as a negative controls, and CFTR mutants as p.Asp443Tyr, p.Gly576Ala, p.Arg668Cys.
X
ABCC7 p.Asp443Tyr 22678879:190:319
status: NEW191 D: HeLa cells transfected with WT CFTR as positive control, p.F508del as a negative control, and CFTR mutants as p.[Gly576Arg;Arg668Cys], [p.Asp443Tyr;Gly576Ala;Arg668Cys], p.[Gly149Arg; Gly576Arg;Arg668Cys] and p.Gly149Arg.
X
ABCC7 p.Asp443Tyr 22678879:191:141
status: NEW192 p.[Asp443Tyr;Gly576Ala;Arg668Cys] (personal data).
X
ABCC7 p.Asp443Tyr 22678879:192:3
status: NEW[hide] Influence of the duplication of CFTR exon 9 and it... J Mol Diagn. 2009 Sep;11(5):488-93. El-Seedy A, Dudognon T, Bilan F, Pasquet MC, Reboul MP, Iron A, Kitzis A, Ladeveze V
Influence of the duplication of CFTR exon 9 and its flanking sequences on diagnosis of cystic fibrosis mutations.
J Mol Diagn. 2009 Sep;11(5):488-93., [PMID:19710401]
Abstract [show]
The DNA sequences of seven regions in the human genome were examined for sequence identity with exon 9 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which is mutated in cystic fibrosis, and its intronic boundaries. These sequences were 95% to 96% homologous. Based on this nucleotide sequence similarity, PCR primers for CFTR exon 9 can potentially anneal with other homologous sequences in the human genome. Sequence alignment analysis of the CFTR exon 9 homologous sequences revealed that five registered mutations in the Cystic Fibrosis Mutation Database may be due to the undesired annealing of primers to a homologous sequence, resulting in inappropriate PCR amplification. For this reason, we propose that certain pseudomutations may result from the similarity between CFTR exon 9 (and its flanking introns) and related sequences in the human genome. Here we show that two mutations previously described in the CFTR database (c.1392 + 6insC; c.1392 + 12G>A) were inappropriately attributed to two individuals who sought carrier testing. A more detailed study by either direct sequencing or subcloning and sequencing of PCR products using specially designed primers revealed that these apparent mutations were not, in fact, present in CFTR. In addition, we present new PCR conditions that permit specific amplification of CFTR exon 9 and its flanking regions.
Comments [show]
None has been submitted yet.
No. Sentence Comment
32 Surprisingly, only one mutation was identified in her father (p.Asp443Tyr in exon 9), and no mutation was found in her mother.
X
ABCC7 p.Asp443Tyr 19710401:32:64
status: NEW33 The same result (p.Asp443Tyr mutation) was obtained in Bordeaux with case 1.
X
ABCC7 p.Asp443Tyr 19710401:33:19
status: NEW36 The new analysis for this family confirmed the previous results: case 1 carries the c.1392 ϩ 6insC and c.1392 ϩ 12GϾA mutations in intron 9, but not the Asp443Tyr mutation in exon 9.
X
ABCC7 p.Asp443Tyr 19710401:36:171
status: NEW37 On analysis of fresh parental samples at Bordeaux Hospital, the previous parental results were also confirmed, showing that her father must be carrier for Asp443Tyr mutation in exon 9.
X
ABCC7 p.Asp443Tyr 19710401:37:155
status: NEW67 Sequencing of the PCR fragments using CF9.6 and CF9 ϩ 58 primers revealed two heterozygous mutations, c.1392 ϩ 6insC and c.1392 ϩ 12GϾA. However, PCR using the CF9-130 and CF9 ϩ 58 primers (PCR product B, Bordeaux primers), revealed only the GϾT variation at position 1327, corresponding to the p.Asp443Tyr mutation, and not the expected c.1392 ϩ 6insC and c.1392 ϩ 12GϾA mutations.
X
ABCC7 p.Asp443Tyr 19710401:67:333
status: NEW70 Surprisingly, only the p.Asp443Tyr mutation was detected using another primers pair that spans from intron 8 to intron 9, (CF9-268 and CF9 ϩ 121, PCR C, from intron 8 to intron 9 as for Bordeaux primers).
X
ABCC7 p.Asp443Tyr 19710401:70:25
status: NEW72 The results revealed that PCR product F covers only the Asp443Tyr mutation, whereas PCR products obtained using exonic Table 1.
X
ABCC7 p.Asp443Tyr 19710401:72:56
status: NEW85 Sequencing analysis of cloned PCR product C showed two alleles: one mutated (p.Asp443Tyr allele) and one wild-type.
X
ABCC7 p.Asp443Tyr 19710401:85:79
status: NEW105 Summary of Clones with Different Genotypes Used for PCR Amplification and Sequencing Case Clone genotype N/N N/N c.1327GϾT(p.Asp443Tyr) N/N N/N c.1392 ϩ 6insC; c.1392 ϩ 12GϾ A c.1327GϾT(p.Asp443Tyr) c.1392 ϩ 6insC; c.1392 ϩ 12GϾ A Total number of clones tested Case 1 % clones of PCR A 19 54 27 0 26 % clones of PCR C 60 40 0 0 15 Case 2 % clones of PCR A 4 26 35 35 15 % clones of PCR C 67 33 0 0 6 N/N ϭ wild-type genotypes.
X
ABCC7 p.Asp443Tyr 19710401:105:131
status: NEWX
ABCC7 p.Asp443Tyr 19710401:105:218
status: NEW114 Moreover, when the annealing temperature of PCR A was increased from 50°C to 60°C, the PCR product A presented only the p.Asp443Tyr mutation (GϾT at 1327) in exon 9, and not the c.1392 ϩ 6insC; c.1392 ϩ 12GϾA mutations.
X
ABCC7 p.Asp443Tyr 19710401:114:132
status: NEW[hide] Validation of high-resolution DNA melting analysis... J Mol Diagn. 2008 Sep;10(5):424-34. Epub 2008 Aug 7. Audrezet MP, Dabricot A, Le Marechal C, Ferec C
Validation of high-resolution DNA melting analysis for mutation scanning of the cystic fibrosis transmembrane conductance regulator (CFTR) gene.
J Mol Diagn. 2008 Sep;10(5):424-34. Epub 2008 Aug 7., [PMID:18687795]
Abstract [show]
High-resolution melting analysis of polymerase chain reaction products for mutation scanning, which began in the early 2000s, is based on monitoring of the fluorescence released during the melting of double-stranded DNA labeled with specifically developed saturation dye, such as LC-Green. We report here the validation of this method to scan 98% of the coding sequence of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. We designed 32 pairs of primers to amplify and analyze the 27 exons of the gene. Thanks to the addition of a small GC-clamp at the 5' ends of the primers, one single melting domain and one identical annealing temperature were obtained to co-amplify all of the fragments. A total of 307 DNA samples, extracted by the salt precipitation method, carrying 221 mutations and 21 polymorphisms, plus 20 control samples free from variations (confirmed by denaturing high-performance liquid chromatography analysis), was used. With the conditions described in this study, 100% of samples that carry heterozygous mutations and 60% of those with homozygous mutations were identified. The study of a cohort of 136 idiopathic chronic pancreatitis patients enabled us to prospectively evaluate this technique. Thus, high-resolution melting analysis is a robust and sensitive single-tube technique for screening mutations in a gene and promises to become the gold standard over denaturing high-performance liquid chromatography, particularly for highly mutated genes such as CFTR, and appears suitable for use in reference diagnostic laboratories.
Comments [show]
None has been submitted yet.
No. Sentence Comment
51 Sequences of the Primers Used for CFTR Analysis by HRM, GC Size, Amplicon Length, Number of Positive Controls Validated for Each Exon, and Positive Controls for Routine Analysis Exon Primer Sequences GC length Amplicon length (bp) Introns Number of heterozygous- positive controls Number of homozygous- positive controls Recommended control 1 LSCFE1Fmod 5Ј-CCGCCGCCGTTGAGCGGCAGGCACC-3Ј 8 200 bp 74 4 125GϾC LSCFE1Rmod 5Ј-CCGCCGCCGGCACGTGTCTTT CCGAAGCT-3Ј 8 19 M1I 2 2i5b 5Ј-CAAATCTGTATGGAGACC-3Ј 0 194 bp 39 5 R31C 2i3Љ 5Ј-CAACTAAACAATGTACATGAAC-3Ј 0 4 296ϩ1GϾT 3 LSCFe3Fmod LSCFe3Rmod 5Ј-CGCCGTTAAGGGAAATAGGACAA CTAAAATA-3Ј 5 276 bp 44 10 2 R75Q 5Ј-CCGCCGATTCACCAGATTTCGTAGTC-3Ј 6 66 G85V 4 LSCFe4FmodC 5Ј-CCGCCGCCGCCCGTGTTGAAATT CTCAGGGT-3Ј 12 361 bp 52 14 1 R117H LSCFe4RmodC 5Ј-CCGCCGCCCACATGTACGATAC AGAATATATGTGCC-3Ј 9 26 574delA 5 LSCFE5Fmod 5Ј-CCGCCGGTTGAAATTATCTAACTTTCC-3Ј 6 201 bp 13 8 624delT LSCFE5Rmod 5Ј-CCGAACTCCGCCTTTCCAGTTGT-3Ј 3 48 711ϩ1GϾT 6a LSCF6aFmod2 5Ј-CCGCCGGGGTGGAAGAT ACAATGACACCTG-3Ј 5 317 bp 25 8 C225X LSCF6aRmod2 5Ј-CCGCCGCCGCGATGCATAGAG CAGTCCTGGTT-3Ј 11 66 L206W 6b LSCFE6bFmod 5Ј-CGCGCCGCCGGATTTAC AGAGATCAGAGAG-3Ј 10 239 bp 0 2 1 R258G LSCFE6Brmod 5Ј-CCGCCGCCGAGGTGGA GTCTACCATGA-3Ј 8 66 1001ϩ11CϾT 7 LSCFE7Fmod2 5Ј-CCGCCGCCCTCTCCCTGAATTT TATTGTTATTGTTT-3Ј 13 326 bp 7 11 1078delT LSCFE7Rmod2 5Ј-CCCGCCGCCCTATAATGCAG CATTATGGT-3Ј 10 7 1248ϩ1GϾT 8 LSCFE8Fmod 5Ј-CCGGAATGCATTAATGCTAT TCTGATTC-3Ј 4 199 bp 32 7 W401X LSCFE8Rmod 5Ј-CCCGCAGTTAGGTGTTTAG AGCAAACAA-3Ј 4 18 1249-5AϾG 9 LSCFe9Fmod2 5Ј-CCGCCGCCGGGAATTATTTGAGAA AGCAAAACA-3Ј 8 279 bp 0 3 D443Y LSCFe9Rmod2 5Ј-CCGCCGCGAAAATACCTTCCAG CACTACAAACTAGAAA-3Ј 8 57 A455E 10 LSCF10FmodD 5Ј-CGCCGTTATGGGAGAACTGG AGCCTTCAGAG-3Ј 5 275 bp 0 15 1 F508del LSCF10RmodD 5Ј-CCGCAGACTAACCGATTGAAT ATGGAGCC-3Ј 4 68 E528E 11 h11i5 5Ј-TGCCTTTCAAATTCAGATTGAGC-3Ј 0 197 bp 42 13 2 G542X 11i3ter 5Ј-ACAGCAAATGCTTGCTAGACC-3Ј 0 17 G551D 12 LSCFE12Fmod 5Ј-CGCGTCATCTACACTAGATGACCAG-3Ј 4 244 bp 43 15 G576A 1898 ϩ 1GϾALSCFE12Rmod 5Ј-CCGGAGGTAAAATGCAATCTATGATG-3Ј 3 63 13 LSCF13AFmod 5Ј-CCGCCGCCGGAGACATATTG CAATAAAGTAT-3Ј 9 38 20 I601F LSCF13ARmod 5Ј-GCCTGTCCAGGAGACAGGA GCATCTC-3Ј 2 R668C LSCF13BFmod 5Ј-CCGCCGCAATCCTAACTGAG ACCTTACACCG-3Ј 2 R668C LSCF13BRmod 5Ј-CCGCCGATCAGGTTCAGGA CAGACTGC-3Ј 3 346 bp 2184insA LSCF13CFmod 5Ј-CCGCGGTGATCAGCACTGGCCC-3Ј 6 301 bp 77 L749L LSCF13CRmod 5Ј-CCGCGCGCGCGGCCAGTTTCTTG AGATAACCTTCT-3Ј 13 259 bp V754M LSCF13DFmod 5Ј-CGTGTCACTGGCCCCTCAGGC-3Ј 1 221 bp I807M LSCF13DRmof 5Ј-CCGCCGCCGCTAATCCTATGA TTTTAGTAAAT-3Ј 9 220 bp 2622ϩ1GϾA LSCf13FFmod 5Ј-CGCGGTGCAGAAAGAAGAAAT TCAATCCTAACTG-3Ј 4 R668C LSCF13FRmod 5Ј-CCGCCGTGCCATTCATTTGT AAGGGAGTCT-3Ј 6 2184insA 14a LSCF14aFmodB 5Ј-CCGACCACAATGGTGGCAT GAAACTG-3Ј 3 239 bp 35 7 1 T854T LSCF14aRmodB 5Ј-CCGCCGACTTTAAATCCAGTAAT ACTTTACAATAGAACA-3Ј 6 7 W846X 14b LSCF14bFmod 5Ј-CCGGAGGAATAGGTGAAGAT-3Ј 2 179 bp 38 4 2752-5GϾT LSCF14bRmodb 5Ј-CCGTACATACAAACATAGTGGATT-3Ј 3 59 2789ϩ5GϾT 15 LSCFE15Fmod 5Ј-CGCGCCGTGTATTGGAAA TTCAGTAAGTAACTTTGG-3Ј 7 412 bp 33 16 T908S LSCFE15Rmod 5Ј-CCGCAGCCAGCACTGCCAT TAGAAA-3Ј 4 68 S945L (table continues) phisms that we have chosen to exclude.
X
ABCC7 p.Asp443Tyr 18687795:51:1874
status: NEW171 Results of CFTR Analysis by HRM on 136 Samples of Patients with Idiopathic Chronic Pancreatitis (ICP) Exon Number of positive samples Mutations identified Variants identified New positive controls 1 14 14 125GϾC 2 1 1 R31C 3 9 1 G85E 7 R75Q 1 R74W 4 4 1 R117G 1 I148T R117G 1 R117H 1 A120T 5 1 1 L188P L188P 6a 5 1 V201M 1 A221A A221A 3 875ϩ40 AϾG 6b 27 1 M284T 26 1001ϩ11CϾT M284T 7 1 1 L320V L320V 8 0 0 9 1 1 D443Y 10 16 8 F508del 8 E528E 11 1 1 G542X 12 6 4 G576A 1 Y577Y L568F 1 L568F 13 7 1 S737F 4 R668C S737F 1 V754M L644L 1 L644L 14a 53 52 T854T T854TϩI853I 1 T854TϩI853I 14b 0 0 15 3 1 L967S T908S 1 T908S 1 S945L 16 0 0 17a 10 7 L997F 1 3271ϩ18CϾT 3271 ϩ 3AϾG 1 3271 ϩ 3 AϾG 1 Y1014C 17b 3 1 L1096L L1096L 1 H1054DϩG1069R 1 3272-33AϾG H1054DϩG1069R 3272-33AϾG 18 2 1 D1152H E1124del 1 E1124del 19 5 5 S1235R poly 20 7 1 W1282X 5 P1290P 1 D1270N 21 2 1 N1303K 1 T1299T 22 0 0 23 1 0 4374ϩ13 AϾG 24 43 40 Q1463Q 2 Y1424Y 1 Q1463QϩY1024Y ing domain of a gene brings an excellent sensitivity for heterozygote detection that is very close to 100%.
X
ABCC7 p.Asp443Tyr 18687795:171:442
status: NEW[hide] High heterogeneity of CFTR mutations and unexpecte... J Cyst Fibros. 2004 Dec;3(4):265-72. des Georges M, Guittard C, Altieri JP, Templin C, Sarles J, Sarda P, Claustres M
High heterogeneity of CFTR mutations and unexpected low incidence of cystic fibrosis in the Mediterranean France.
J Cyst Fibros. 2004 Dec;3(4):265-72., [PMID:15698946]
Abstract [show]
In this report, we present updated spectrum and frequency of mutations of the CFTR gene that are responsible for cystic fibrosis (CF) in Languedoc-Roussillon (L-R), the southwestern part of France. A total of 75 different mutations were identified by DGGE in 215 families, accounting for 97.6% of CF genes and generating 88 different mutational genotypes. The frequency of p.F508del was 60.23% in L-R versus 67.18% in the whole country and only five other mutations (p.G542X, p.N1303K, p.R334W, c.1717-1G>A, c.711+1G>T) had a frequency higher than 1%. The mutations were scattered over 20 exons or their border. This sample representing only 5.7% of French CF patients contributed to 24% of CFTR mutations reported in France. This is one of the highest molecular allelic heterogeneity reported so far in CF. We also present the result of a neonatal screening program based on a two-tiered approach "IRT/20 mutations/IRT" analysis on blood spots, implemented in France with the aim to improve survival and quality of life of patients diagnosed before clinical onset. This 18-month pilot project showed an unexpected low incidence of CF (1/8885) in South of France, with only six CF children detected among 43,489 neonates born in L-R, and 13 among 125,339 neonates born in Provence-Alpes-Cote-d'Azur (PACA).
Comments [show]
None has been submitted yet.
No. Sentence Comment
68 of chromosomes (frequency %) p.M1V 1 1 (0.23) p.M1K 1 1 (0.23) c.300delA 3 1 (0.23) p.P67L 3 1 (0.23) c.359insT 3 1 (0.23) p.G85E 3 3 (0.70) c.394delTT 3 1 (0.23) p.Q98R 4 1 (0.23) p.R117H 4 2 (0.47) p.Y122X 4 2 (0.47) p.Y161N 4 1 (0.23) c.621+1GNT intron 4 1 (0.23) c.621+2TNG intron 4 1 (0.23) p.I175V 5 2 (0.47) c.711+1GNT intron 5 5 (1.16) p.L206W 6 3 (0.70) p.Q220X 6 1 (0.23) p.L227R 6 1 (0.23) c.1078delT 7 2 (0.47) p.R334W 7 7 (1.63) p.R347P 7 2 (0.47) c.1215delG 7 1 (0.23) c.T5 intron 8 1 (0.23) p.D443Y 9 1 (0.23) p.I506T 10 1 (0.23) p.I507del 10 4 (0.93) p.F508del 10 259 (60.23) p.F508C 10 1 (0.23) c.1677delTA 10 1 (0.23) c.1717-8GNA intron 10 1 (0.23) c.1717-1GNA intron 10 6 (1.40) p.G542X 11 23 (5.35) p.S549R 11 1 (0.23) p.G551D 11 2 (0.47) p.R553X 11 1 (0.23) c1811+1.6kbANG intron 11 4 (0.93) c.1812-1GNA intron 11 1 (0.23) p.T582I 12 1 (0.23) p.E585X 12 2 (0,47) c.1898+1GNA intron 12 1 (0.23) [c.1898+5GNA ;p.E725K] intron 12 1 (0.23) c.1898+73TNG intron 12 1 (0.23) c.2183AANG 13 4 (0.93) c.2184insA 13 1 (0.23) p.K710X 13 4 (0.93) c.2423delG 13 1 (0.23) p.S776X 13 1 (0.23) c.2493ins8 13 1 (0.23) p.R792X 13 1 (0.23) p.K830X 13 1 (0.23) p.D836Y 14a 1 (0.23) p.W846X1 14a 1 (0.23) c.2711delT 14a 1 (0.23) c.2789+5GNA intron 14b 3 (0.70) p.S945L 15 3 (0.70) p.D993Y 16 1 (0.23) c.3129del4 17a 1 (0.23) c.3195del6 17a 1 (0.23) c.3272-26ANG intron 17a 1 (0.23) [c.3395insA ;pI148T] 17b/4 1 (0,23) p.Y1092X 17b 3 (0.70) Table 1 (continued) Mutation Location exon/intron No.
X
ABCC7 p.Asp443Tyr 15698946:68:508
status: NEW[hide] Spectrum of CFTR mutations in cystic fibrosis and ... Hum Mutat. 2000;16(2):143-56. Claustres M, Guittard C, Bozon D, Chevalier F, Verlingue C, Ferec C, Girodon E, Cazeneuve C, Bienvenu T, Lalau G, Dumur V, Feldmann D, Bieth E, Blayau M, Clavel C, Creveaux I, Malinge MC, Monnier N, Malzac P, Mittre H, Chomel JC, Bonnefont JP, Iron A, Chery M, Georges MD
Spectrum of CFTR mutations in cystic fibrosis and in congenital absence of the vas deferens in France.
Hum Mutat. 2000;16(2):143-56., [PMID:10923036]
Abstract [show]
We have collated the results of cystic fibrosis (CF) mutation analysis conducted in 19 laboratories in France. We have analyzed 7, 420 CF alleles, demonstrating a total of 310 different mutations including 24 not reported previously, accounting for 93.56% of CF genes. The most common were F508del (67.18%; range 61-80), G542X (2.86%; range 1-6.7%), N1303K (2.10%; range 0.75-4.6%), and 1717-1G>A (1.31%; range 0-2.8%). Only 11 mutations had relative frequencies >0. 4%, 140 mutations were found on a small number of CF alleles (from 29 to two), and 154 were unique. These data show a clear geographical and/or ethnic variation in the distribution of the most common CF mutations. This spectrum of CF mutations, the largest ever reported in one country, has generated 481 different genotypes. We also investigated a cohort of 800 French men with congenital bilateral absence of the vas deferens (CBAVD) and identified a total of 137 different CFTR mutations. Screening for the most common CF defects in addition to assessment for IVS8-5T allowed us to detect two mutations in 47.63% and one in 24.63% of CBAVD patients. In a subset of 327 CBAVD men who were more extensively investigated through the scanning of coding/flanking sequences, 516 of 654 (78. 90%) alleles were identified, with 15.90% and 70.95% of patients carrying one or two mutations, respectively, and only 13.15% without any detectable CFTR abnormality. The distribution of genotypes, classified according to the expected effect of their mutations on CFTR protein, clearly differed between both populations. CF patients had two severe mutations (87.77%) or one severe and one mild/variable mutation (11.33%), whereas CBAVD men had either a severe and a mild/variable (87.89%) or two mild/variable (11.57%) mutations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
109 h M1K, K14X, W19X, 211delG, G27E, R31C, 237insA, 241delAT, Q39X, 244delTA, 296+2T>C, 297-3C>T, W57X+F87L, 306delTAGA, P67L, A72D, 347delC, R75Q, 359insT, 394delT, 405+4A>G, Q98R, 457TAT>G, R117H+5T, R117H+I1027T, R117L, R117P, H139R, A141D, M152V, N186K, D192N, D192del, E193X, 711+1G>A, 711+3A>G, 712-1G>T, L206F, W216X, C225R, Q237E, G241R, 852del22, 876-14del12, 905delG, 993del5, E292K, Y304X, F311del, 1161delC, R347L, R352Q, W361R, 1215delG, S364P, S434X, D443Y, S466X, C491R, T501A, I506T, F508C, I507del+F508C, F508del+L467F, 1774delCT, R553G, 1802delC, 1806delA, A559E, Y563N, 1833delT, Y569C, Y569H, Y569X, G576X, G576A, T582I, 1898+3A>G+186-13C>G, 1918delGC, R600G, L610S, G628R, 2043delG, 2118del4, E664X, 2174insA, Q689X, K698R, K716X, L732X, 2347delG, 2372del8, R764X, 2423delG, S776X, 2634insT, 2640delT, C866Y, 2752-1G>T, W882X, Y913C, V920M, 2896insAG, H939D, H939R, D979V, D985H, D993Y, 3120G>A, I1005R, 3195del6, 3293delA, 3320ins5, W1063X, A1067T, 3359delCT, T1086I, W1089X, Y1092X+S1235R, W1098X, E1104X, R1128X, 3532AC>GTA, 3548TCAT>G, M1140del, 3600G>A, R1162L, 3667ins4, 3732delA+K1200E, S1206X, 3791delC, S1235R+5T, Q1238R, Q1238X, 3849+4A>G, T1246I, 3869insG, S1255P, R1283K, F1286S, 4005+1G>T, 4006-8T>A, 4015delA, N1303H, N1303I, 4172delGC, 4218insT, 4326delTC, Q1382X, 4375-1C>T, 4382delA, D1445N, CF40kbdel4-10, Cfdel17b.
X
ABCC7 p.Asp443Tyr 10923036:109:462
status: NEW115 The most frequent were F508del (21.75%), the 5T allele (16.31%), and R117H (4.37%), followed by D1152H (1.19%), and D443Y (0.93%).
X
ABCC7 p.Asp443Tyr 10923036:115:116
status: NEW171 CFTR Mutation Genotypes Identified Both in Cystic Fibrosis (CF) and in Congenital Bilateral Absence of the Vas Deferens (CBAVD) CF CBAVD F508del/5T 3 143 F508del/2789+5G>A 53 1 F508del/3272-26A>G 17 4 F508del/R117H* 10 39 F508del/R117C 2 2 F508del/L206W 12 4 F508del/R347H 10 5 F508del/R347L 1 1 F508del/D443Y 1 5 F508del/Y569C 1 1 F508del/P574H 3 1 F508del/G628R(G>A) 2 1 F508del/V920M 1 1 F508del/R1070W 2 3 F508del/D1152H 6 8 F508del/S1235R 3 1 F508del/T1246I 1 1 F508del/D1270N+R74W 2 3 F508delN1303I 1 1 3659delC/R347H 1 1 G542X/T338I 2 2 R347H/R1066H 1 1 *The only case with CF whose alleles at IVS8(T)n were reported had mutation R117H associated with a 5T allele.
X
ABCC7 p.Asp443Tyr 10923036:171:304
status: NEW[hide] Screening practices for mutations in the CFTR gene... Hum Mutat. 2000;15(2):135-49. Girodon-Boulandet E, Cazeneuve C, Goossens M
Screening practices for mutations in the CFTR gene ABCC7.
Hum Mutat. 2000;15(2):135-49., [PMID:10649490]
Abstract [show]
Cystic fibrosis transmembrane conductance regulator (CFTR) gene studies are now one of the most frequent activities in clinical molecular genetics laboratories. The number of requests is growing, owing to the increasingly wide range of recognized CFTR gene diseases (cystic fibrosis, congenital bilateral absence of the vas deferens, disseminated bronchiectasis, allergic bronchopulmonary aspergillosis and chronic pancreatitis), and the availability of efficient molecular tools for detecting mutations. A growing number of tests capable of simultaneously detecting several frequent CF mutations are being developed, and commercial kits are now available. The most recent kits detect nearly 90% of defective alleles in Caucasians, a rate high enough for carrier screening and for the majority of diagnostic requests. However, because of the wide variety of molecular defects documented in the CFTR gene, only a limited number of laboratories have mastered the entire panoply of necessary techniques, while other laboratories have to refer certain cases to specialized centers with complementary and/or scanning tools at their disposal. A good knowledge of CFTR diseases and their molecular mechanisms, together with expertise in the various techniques, is crucial for interpreting the results. Diagnostic strategies must take into account the indication, the patient's ethnic origin, and the time available in the framework of genetic counseling. This review presents the methods most frequently used for detecting CFTR gene mutations, and discusses the strategies most suited to the different clinical settings.
Comments [show]
None has been submitted yet.
No. Sentence Comment
74 However, it still fails to cover several mutations frequent in certain geographical areas, such as 394delTT, 405+1G>A, 2143delT, 1677delTA, Y1092X, R1066C, 3272- 26A>G and 1811+1.6kbA>G, and other mutations frequent in CBAVD patients, such as IVS8-5T, D443Y, R668C and D1152H.
X
ABCC7 p.Asp443Tyr 10649490:74:252
status: NEW[hide] Genetic findings in congenital bilateral aplasia o... Hum Mutat. 1998;11(6):480. de Meeus A, Guittard C, Desgeorges M, Carles S, Demaille J, Claustres M
Genetic findings in congenital bilateral aplasia of vas deferens patients and identification of six novel mutatations. Mutations in brief no. 138. Online.
Hum Mutat. 1998;11(6):480., [PMID:10200050]
Abstract [show]
Congential bilateral aplasia of vas deferens (CBAVD), a form of male sterility, has been suggested to represent a "genital" form of cystic fibrosis (CF), as mutations in the CFTR gene have been identified in most patients with this condition. Interestingly, the 5T allele in intron 8 appeared to be the most frequent mutation associated with CBAVD. However, the molecular basis of CBAVD is not completely understood. We have analysed the complete coding and flanking CFTR sequences by PCR-DGGE in 64 men with CBAVD from southern France with the aim to list any sequence alteration. Fourty-two of the 64 patients (65.6%) had mutations on both copies of the CFTR gene, including one patient with two mutations in the same copy (DF508 + A1067T). The 5T allele was present in 21/64 cases (33%). Six of the 28 different mutations identified in this study had never been described previously, and appeared to be specific to CBAVD (P111L, M244K, A1364V, G544V, 2896insAG,-33G->A).
Comments [show]
None has been submitted yet.
No. Sentence Comment
50 These mutations can also be found in the CF patients from our area, except seven (D443Y, M244K, P111L, A1364V, G544V, 2896insAG and -33G->A) which appear to be specific to CBAVD.
X
ABCC7 p.Asp443Tyr 10200050:50:82
status: NEW83 Phenotype CFTRamutations Intron 8, Poly(T) tract 1 3 crisis of acute pancreatitis F508 / L206W 9/7 2 F508 / L206W 9/9 3 frequent bronchitis F508 / R347H 9/9 4 F508 / R347H 9/9 5 F508 / M244K 9/7 6 F508 / A1364V 9/7 7 F508 / D1152H 9/7 8 chronic sinusitis and bronchitis F508 / D1152H 9/7 9 F508 / R117H 9/7 10 F508 / R117H 9/7 11 F508 / M952I 9/7 12 D443Y / G542X 7/9 13 D443Y / G542X 7/9 14 2184delA / D443Y 7/7 15 2184delA / D443Y 7/7 16 R347H / D443Y 9/7 17 seminal vesicles agenesia R117H / G1349D 7/7 18 R117H / G1244E 7/7 19 N1303K / P111L 9/7 20 chronic sinusitis, nasal polyps W1282X / D1152H 7/7 21 chronic sinusitis R347H / Y1092X 7/7 22 seminal vesicles agnesia 297-3C-GTT / 4279insA 7/7 23 G544V / F508C 7/7 24 D1152H / 2896insAG 7-9 25 F508 / - 9/5 26 F508 / - 9/5 27 F508 / - 9/5 28 F508 / - 9/5 29 F508 / - 9/5 30 chronic sinusitis, bronchitis F508 / - 9/5 31 sinusitis and allergy F508 / - 9/5 32 allergy F508 / - 9/5 33 F508 / - 9/5 34 F508 / - 9/5 35 F508 / - 9/5 36 F508 / - 9/5 37 bronchitis, asthma F508 / - 9/5 38 chronic sinusitis F508+A1067T / - 9/5 39 chronic sinusitis D1152H / - 7/5 40 2184delA / - 7/5 41 R764X / - 7/5 42 711+1G-GTT / - 7/5 43 F508 / - 9/7 44 F508 / - 9/7 45 F508 / - 9/7 46 F508 / - 9/9 47 R553X / - 7/7 48 -33G-GTA / - 7/7 49 K710X / - 7/7 50 - / - 5/5 51 - / - 5/7 52 - / - 5/7 53 - / - 7/7 54 - / - 7/7 55 - / - 7/7 56 - / - 7/7 57 - / - 7/7 58 - / - 7/7 59 - / - 7/7 60 - / - 7/7 61 - / - 7/9 62 - / - 7/9 63 NIDDb - / - 7/9 64 - / - 7/9 a : Cystic Fibrosis Transmembrane Regulator gene b : Non Insulino-Dependant Diabetis References Anguiano A, Oates RD, Amos JA, Dean M, Gerrard B, Stewart C, Maher TA, White MB, Milunsky A (1992) Congenital absence of the vas deferens: a primarily genital form of cystic fibrosis.
X
ABCC7 p.Asp443Tyr 10200050:83:350
status: NEWX
ABCC7 p.Asp443Tyr 10200050:83:371
status: NEWX
ABCC7 p.Asp443Tyr 10200050:83:403
status: NEWX
ABCC7 p.Asp443Tyr 10200050:83:427
status: NEWX
ABCC7 p.Asp443Tyr 10200050:83:448
status: NEW[hide] Effect of ivacaftor on CFTR forms with missense mu... J Cyst Fibros. 2014 Jan;13(1):29-36. doi: 10.1016/j.jcf.2013.06.008. Epub 2013 Jul 23. Van Goor F, Yu H, Burton B, Hoffman BJ
Effect of ivacaftor on CFTR forms with missense mutations associated with defects in protein processing or function.
J Cyst Fibros. 2014 Jan;13(1):29-36. doi: 10.1016/j.jcf.2013.06.008. Epub 2013 Jul 23., [PMID:23891399]
Abstract [show]
BACKGROUND: Ivacaftor (KALYDECO, VX-770) is a CFTR potentiator that increased CFTR channel activity and improved lung function in patients age 6 years and older with CF who have the G551D-CFTR gating mutation. The aim of this in vitro study was to evaluate the effect of ivacaftor on mutant CFTR protein forms with defects in protein processing and/or channel function. METHODS: The effect of ivacaftor on CFTR function was tested in electrophysiological studies using a panel of Fischer rat thyroid (FRT) cells expressing 54 missense CFTR mutations that cause defects in the amount or function of CFTR at the cell surface. RESULTS: Ivacaftor potentiated multiple mutant CFTR protein forms that produce functional CFTR at the cell surface. These included mutant CFTR forms with mild defects in CFTR processing or mild defects in CFTR channel conductance. CONCLUSIONS: These in vitro data indicated that ivacaftor is a broad acting CFTR potentiator and could be used to help stratify patients with CF who have different CFTR genotypes for studies investigating the potential clinical benefit of ivacaftor.
Comments [show]
None has been submitted yet.
No. Sentence Comment
116 Other examples of complex CFTR alleles include the number of TG repeats in intron 8 along with the 5T CFTR mutation (e.g., TG11-5T, TG12-5T, TG13-5T), R668C-G576A-D443Y, and R74W-D1270N [8,16].
X
ABCC7 p.Asp443Tyr 23891399:116:163
status: NEW[hide] Genetics of cystic fibrosis: CFTR mutation classif... Int J Biochem Cell Biol. 2014 Jul;52:94-102. doi: 10.1016/j.biocel.2014.02.023. Epub 2014 Mar 12. Fanen P, Wohlhuter-Haddad A, Hinzpeter A
Genetics of cystic fibrosis: CFTR mutation classifications toward genotype-based CF therapies.
Int J Biochem Cell Biol. 2014 Jul;52:94-102. doi: 10.1016/j.biocel.2014.02.023. Epub 2014 Mar 12., [PMID:24631642]
Abstract [show]
Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes an epithelial anion channel. Since the identification of the disease in 1938 and up until 2012, CF patients have been treated exclusively with medications aimed at bettering their respiratory, digestive, inflammatory and infectious symptoms. The identification of the CFTR gene in 1989 gave hopes of rapidly finding a cure for the disease, for which over 1950 mutations have been identified. Since 2012, recent approaches have enabled the identification of small molecules targeting either the CFTR protein directly or its key processing steps, giving rise to novel promising therapeutic tools. This review presents the current CFTR mutation classifications according to their clinical consequences and to their effect on the structure and function of the CFTR channel. How these classifications are essential in the establishment of mutation-targeted therapeutic strategies is then discussed. The future of CFTR-targeted treatment lies in combinatory therapies that will enable CF patients to receive a customized treatment.
Comments [show]
None has been submitted yet.
No. Sentence Comment
70 Group A Group B Group C Group D Classic-CF CF-causing mutations Non-classic CF CFTR-related disorder associated mutations No clinical consequence Unknown clinical relevance All mutations in Table 2 and 711 + 3A > G*, R117H-T5*, D1152H*, L206W*, TG13-T5* TG13-T5a , R117H-T5a , D1152Ha , L206Wa , L997F, M952I, D565Ga , TG11-T5b , R117H-T7b , D443Y-G576A-R668C, R74W-D1270N, R75Qb TG11-T5b , R117H-T7b , R75Qb , 875 + 40A/G, M470V, T854T, P1290P, I807M, I521F, R74W, F508C, I506V, I148T All mutations (mostly missense) not yet analyzed or undergoing functional analysis a Mutations that may belong either to Group A or to Group B. b Mutations that may belong either to Group B or to Group C.
X
ABCC7 p.Asp443Tyr 24631642:70:342
status: NEW[hide] Mechanisms of CFTR functional variants that impair... PLoS Genet. 2014 Jul 17;10(7):e1004376. doi: 10.1371/journal.pgen.1004376. eCollection 2014 Jul. LaRusch J, Jung J, General IJ, Lewis MD, Park HW, Brand RE, Gelrud A, Anderson MA, Banks PA, Conwell D, Lawrence C, Romagnuolo J, Baillie J, Alkaade S, Cote G, Gardner TB, Amann ST, Slivka A, Sandhu B, Aloe A, Kienholz ML, Yadav D, Barmada MM, Bahar I, Lee MG, Whitcomb DC
Mechanisms of CFTR functional variants that impair regulated bicarbonate permeation and increase risk for pancreatitis but not for cystic fibrosis.
PLoS Genet. 2014 Jul 17;10(7):e1004376. doi: 10.1371/journal.pgen.1004376. eCollection 2014 Jul., [PMID:25033378]
Abstract [show]
CFTR is a dynamically regulated anion channel. Intracellular WNK1-SPAK activation causes CFTR to change permeability and conductance characteristics from a chloride-preferring to bicarbonate-preferring channel through unknown mechanisms. Two severe CFTR mutations (CFTRsev) cause complete loss of CFTR function and result in cystic fibrosis (CF), a severe genetic disorder affecting sweat glands, nasal sinuses, lungs, pancreas, liver, intestines, and male reproductive system. We hypothesize that those CFTR mutations that disrupt the WNK1-SPAK activation mechanisms cause a selective, bicarbonate defect in channel function (CFTRBD) affecting organs that utilize CFTR for bicarbonate secretion (e.g. the pancreas, nasal sinus, vas deferens) but do not cause typical CF. To understand the structural and functional requirements of the CFTR bicarbonate-preferring channel, we (a) screened 984 well-phenotyped pancreatitis cases for candidate CFTRBD mutations from among 81 previously described CFTR variants; (b) conducted electrophysiology studies on clones of variants found in pancreatitis but not CF; (c) computationally constructed a new, complete structural model of CFTR for molecular dynamics simulation of wild-type and mutant variants; and (d) tested the newly defined CFTRBD variants for disease in non-pancreas organs utilizing CFTR for bicarbonate secretion. Nine variants (CFTR R74Q, R75Q, R117H, R170H, L967S, L997F, D1152H, S1235R, and D1270N) not associated with typical CF were associated with pancreatitis (OR 1.5, p = 0.002). Clones expressed in HEK 293T cells had normal chloride but not bicarbonate permeability and conductance with WNK1-SPAK activation. Molecular dynamics simulations suggest physical restriction of the CFTR channel and altered dynamic channel regulation. Comparing pancreatitis patients and controls, CFTRBD increased risk for rhinosinusitis (OR 2.3, p<0.005) and male infertility (OR 395, p<<0.0001). WNK1-SPAK pathway-activated increases in CFTR bicarbonate permeability are altered by CFTRBD variants through multiple mechanisms. CFTRBD variants are associated with clinically significant disorders of the pancreas, sinuses, and male reproductive system.
Comments [show]
None has been submitted yet.
No. Sentence Comment
269 67 SNPs (125GtoC, 1716G.A, 1717-1G.A, 1898+1G.A, 2183AA.G, 2184delA, 2789+5G.A, 3120+1G.A, 3659delC, 3849+10kbC.T, 621+ 1G.T, 711+5G.A, A455E, D110H, D1152H, D1270N, D443Y, D579G, F1052V, F1074L, F508C, F508del, G1069R, G1244E, G1349D, G178R, G542X, G551D, G551S, I1131L/V, I148T, I336K/T, I507del, I807M, IVS8T5, K1180T, L1065P, L967S, L997F, M1V, M470V, M952I, M952T, N1303K, P67L, Q1463Q, R1070Q, R1162X, R117C, R117H, R170H, R258G, R297Q, R31C, R352Q, R553X, R668C, R74W, R75Q, S1235R, S1255P, S485R, S977F, T338I, T854T, V201M, W1282X) were multiplexed into 6 wells; 14 SNPs (S492F, S945L, R74Q, R560T, R1162L, G85E, I1027T, R334W, R347P, G576A, 711+1G.T, 1001+11C.T, P1290P, 3199del6) were ascertained separately via TaqMan Gene Expression Assays, with repeat confirmation of all positive results.
X
ABCC7 p.Asp443Tyr 25033378:269:166
status: NEW