ABCC7 p.Asn1303His
ClinVar: |
c.3908A>T
,
p.Asn1303Ile
?
, not provided
c.3909C>G , p.Asn1303Lys D , Pathogenic c.3907A>C , p.Asn1303His D , Pathogenic |
CF databases: |
c.3909C>G
,
p.Asn1303Lys
D
, CF-causing ; CFTR1: The substitution was found in three adult British Caucasian patients all of whom are heterozygous for the mutation. Two of the patients are pancreatic sufficient with mild to moderate lung disease, and their other chromosomes carry an, as yet, uncharacterized mutation. In all patients the substitution appears to be associated with the haplotype 1,2,2 at XV-2C, KM19 and pMP6d-9 respectively. The third patient has the 551 mutation on the other chromosome, is pancreatic insufficient and died in respiratory failure at the age of 22.
c.3907A>C , p.Asn1303His (CFTR1) ? , The mutation can be detected by ASO hybridization (normal: 5'-TAG AAA AAA CTTGGA-3'; mutant: 5'-TAG AAA ACA CTT GGA-3'). The patient is 22 years old and is originating from the Kabilie ethnic group (North Africa); he presents a severe disease, including hepatic and exocrine pancreatic insufficiencies. c.3908A>T , p.Asn1303Ile (CFTR1) ? , |
Predicted by SNAP2: | A: D (95%), C: D (95%), D: D (95%), E: D (95%), F: D (95%), G: D (95%), H: N (78%), I: D (95%), K: D (95%), L: D (95%), M: D (95%), P: D (95%), Q: D (95%), R: D (95%), S: D (95%), T: D (95%), V: D (95%), W: D (95%), Y: D (95%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, G: D, H: D, I: D, K: D, L: D, M: D, P: D, Q: D, R: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Two buffer PAGE system-based SSCP/HD analysis: a g... Eur J Hum Genet. 1999 Jul;7(5):590-8. Liechti-Gallati S, Schneider V, Neeser D, Kraemer R
Two buffer PAGE system-based SSCP/HD analysis: a general protocol for rapid and sensitive mutation screening in cystic fibrosis and any other human genetic disease.
Eur J Hum Genet. 1999 Jul;7(5):590-8., [PMID:10439967]
Abstract [show]
The large size of many disease genes and the multiplicity of mutations complicate the design of an adequate assay for the identification of disease-causing variants. One of the most successful methods for mutation detection is the single strand conformation polymorphism (SSCP) technique. By varying temperature, gel composition, ionic strength and additives, we optimised the sensitivity of SSCP for all 27 exons of the CFTR gene. Using simultaneously SSCP and heteroduplex (HD) analysis, a total of 80 known CF mutations (28 missense, 22 frameshift, 17 nonsense, 13 splicesite) and 20 polymorphisms was analysed resulting in a detection rate of 97.5% including the 24 most common mutations worldwide. The ability of this technique to detect mutations independent of their nature, frequency, and population specificity was confirmed by the identification of five novel mutations (420del9, 1199delG, R560S, A613T, T1299I) in Swiss CF patients, as well as by the detection of 41 different mutations in 198 patients experimentally analysed. We present a three-stage screening strategy allowing analysis of seven exons within 5 hours and analysis of the entire coding region within 1 week, including sequence analysis of the variants. Additionally, our protocol represents a general model for point mutation analysis in other genetic disorders and has already been successfully established for OTC deficiency, collagene deficiency, X-linked myotubular myopathy (XLMTM), Duchenne and Becker muscular dystrophy (DMD, BMD), Wilson disease (WD), Neurofibromatosis I and II, Charcot-Marie-Tooth disease, hereditary neuropathy with liability to pressure palsies, and defects in mitochondrial DNA. No other protocol published so far presents standard SSCP/HD conditions for mutation screening in different disease genes.
Comments [show]
None has been submitted yet.
No. Sentence Comment
20 The distribution of analysed known mutations is similar to that of the total number of mutations in the entire CFTR gene: missense mutations account for 35% (G27E, G85E, R117H, A120T, I148T, H199Y, R334W, T338I, R347P, R347H, A455E, M718K, S5449N, S5449I, G551D, R560T, R560S, S945L, S977P, I1005R, R1066C, R1070Q, M1101K, D1152H, S1235R, R1283M, N1303K, N1303H), followed by 28% of frameshift mutations (175delC, 394delTT, 457TAT- > G, 905delG, 1078delT, I507, F508, 1609delCA, 1677delTA, 2143delT, 2176insC, 218delA, 2184insA, 2869insG, 3659delC, 3732delA, 3821delT, 3905insT, 4016insT, 4172delGC, 4382delA), 21% of nonsense mutations (Q30X, Q39X, Q220X, W401X, Q525X, G542X, Q552X, R553X, V569X, E585X, K710X, R792X, Y1092X, R1162X, S1255X, W1282X, E1371X), and 16% of splice site mutations (621 + 1G- > T, 711 + 1G- > T, 711 + 5G- > A, 1717-1G- > A, 1898 + 1G- > A, 1898 + 5G- > T, 2789 + 5G- > A, 3271 + 1G- > A, 3272-26A- > G, 3601-17T- > C, 3849 + 4A- > G, 3849 + 10kbC- > T, 4374 + 1G- > T).
X
ABCC7 p.Asn1303His 10439967:20:355
status: NEW[hide] Mutations that change the position of the putative... J Biol Chem. 2002 Jan 18;277(3):2125-31. Berger AL, Ikuma M, Hunt JF, Thomas PJ, Welsh MJ
Mutations that change the position of the putative gamma-phosphate linker in the nucleotide binding domains of CFTR alter channel gating.
J Biol Chem. 2002 Jan 18;277(3):2125-31., 2002-01-18 [PMID:11788611]
Abstract [show]
The cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel is an ATP-binding cassette transporter that contains conserved nucleotide-binding domains (NBDs). In CFTR, the NBDs bind and hydrolyze ATP to open and close the channel. Crystal structures of related NBDs suggest a structural model with an important signaling role for a gamma-phosphate linker peptide that couples bound nucleotide to movement of an alpha-helical subdomain. We mutated two residues in CFTR that the structural model predicts will uncouple effects of nucleotide binding from movement of the alpha-helical subdomain. These residues are Gln-493 and Gln-1291, which may directly connect the ATP gamma-phosphate to the gamma-phosphate linker, and residues Asn-505 and Asn-1303, which may form hydrogen bonds that stabilize the linker. In NBD1, Q493A reduced the frequency of channel opening, suggesting a role for this residue in coupling ATP binding to channel opening. In contrast, N505C increased the frequency of channel opening, consistent with a role for Asn-505 in stabilizing the inactive state of the NBD. In NBD2, Q1291A decreased the effects of pyrophosphate without altering other functions. Mutations of Asn-1303 decreased the rate of channel opening and closing, suggesting an important role for NBD2 in controlling channel burst duration. These findings are consistent with both the bacterial NBD structural model and gating models for CFTR. Our results extend models of nucleotide-induced structural changes from bacterial NBDs to a functional mammalian ATP-binding cassette transporter.
Comments [show]
None has been submitted yet.
No. Sentence Comment
161 We observed similar kinetic effects when Asn-1303 was changed to another CF-associated mutation (N1303H), a sequenced mutation with undetermined clinical consequences (N1303I), and an Ala (N1303A) (Fig. 8).
X
ABCC7 p.Asn1303His 11788611:161:97
status: NEW180 Comparison of single-channel kinetics of CFTR-N1303K, CFTR-N1303H, CFTR-N1303I, and CFTR-N1303A.
X
ABCC7 p.Asn1303His 11788611:180:59
status: NEW209 N1303H and N1303I also alter channel gating although their effect on Po was minor.
X
ABCC7 p.Asn1303His 11788611:209:0
status: NEW[hide] DHPLC screening of cystic fibrosis gene mutations. Hum Mutat. 2002 Apr;19(4):374-83. Ravnik-Glavac M, Atkinson A, Glavac D, Dean M
DHPLC screening of cystic fibrosis gene mutations.
Hum Mutat. 2002 Apr;19(4):374-83., [PMID:11933191]
Abstract [show]
Denaturing high performance liquid chromatography (DHPLC) using ion-pairing reverse phase chromatography (IPRPC) columns is a technique for the screening of gene mutations. In order to evaluate the potential utility of this assay method in a clinical laboratory setting, we subjected the PCR products of 73 CF patients known to bear CFTR mutations to this analytic technique. We used thermal denaturation profile parameters specified by the MELT program tool, made available by Stanford University. Using this strategy, we determined an initial analytic sensitivity of 90.4% for any of 73 known CFTR mutations. Most of the mutations not detected by DHPLC under these conditions are alpha-substitutions. This information may eventually help to improve the MELT algorithm. Increasing column denaturation temperatures for one or two degrees above those recommended by the MELT program allowed 100% detection of CFTR mutations tested. By comparing DHPLC methodology used in this study with the recently reported study based on Wavemaker 3.4.4 software (Transgenomic, Omaha, NE) [Le Marechal et al., 2001) and with previous SSCP analysis of CFTR mutations [Ravnik-Glavac et al., 1994] we emphasized differences and similarities in order to refine the DHPLC system and discuss the relationship to the alternative approaches. We conclude that the DHPLC method, under optimized conditions, is highly accurate, rapid, and efficient in detecting mutations in the CFTR gene and may find high utility in screening individuals for CFTR mutations. Hum Mutat 19:374-383, 2002. Published 2002 Wiley-Liss, Inc.
Comments [show]
None has been submitted yet.
No. Sentence Comment
42 The following mutations have been studied: exon 3: W57G, R74W, R75Q, G85E, 394delTT, 405+ 1G>A; exon 4: E92X, P99L, 441delA, 444delA, 457TAT>G, D110H, R117C, R117H, A120T, 541delC, 544delCA, Q151X, 621+1G>T, 662- 2A>C; exon 7: 1078delT, F331L, R334W, I336K, R347C, R347P, A349V, R352Q, 1221delCT; exon 10: S492F, Q493X, 1609delCA, deltaI507, deltaF508; exon 11: G542X, S549N, G551D, R553X, A559T, R560K, R560T; exon 13: K716X, Q685X, G628R, L719X; exon 17b: H1054D, G1061R, 3320ins5, R1066H, R1066L, R1070Q, 3359delCT, L1077P, H1085R, Y1092X; exon 19: R1162X, 3659delC, 3662delA, 3667del4, 3737delA, I1234V, S1235R, 3849G>A; exon 20: 3860ins31,S1255X,3898insC,3905insT,D1270N, W1282X, Q1291R; and exon 21: N1303H, N1303K, W1316X.
X
ABCC7 p.Asn1303His 11933191:42:706
status: NEW[hide] Association of cystic fibrosis genetic modifiers w... Fertil Steril. 2010 Nov;94(6):2122-7. Epub 2010 Jan 25. Havasi V, Rowe SM, Kolettis PN, Dayangac D, Sahin A, Grangeia A, Carvalho F, Barros A, Sousa M, Bassas L, Casals T, Sorscher EJ
Association of cystic fibrosis genetic modifiers with congenital bilateral absence of the vas deferens.
Fertil Steril. 2010 Nov;94(6):2122-7. Epub 2010 Jan 25., [PMID:20100616]
Abstract [show]
OBJECTIVE: To investigate whether genetic modifiers of cystic fibrosis (CF) lung disease also predispose to congenital bilateral absence of the vas deferens (CBAVD) in association with cystic fibrosis transmembrane conductance regulator (CFTR) mutations. We tested the hypothesis that polymorphisms of transforming growth factor (TGF)-beta1 (rs 1982073, rs 1800471) and endothelin receptor type A (EDNRA) (rs 5335, rs 1801708) are associated with the CBAVD phenotype. DESIGN: Genotyping of subjects with clinical CBAVD. SETTING: Outpatient and hospital-based clinical evaluation. PATIENT(S): DNA samples from 80 subjects with CBAVD and 51 healthy male controls from various regions of Europe. This is one of the largest genetic studies of this disease to date. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Genotype analysis. RESULT(S): For single nucleotide polymorphism (SNP) rs 5335, we found increased frequency of the CC genotype among subjects with CBAVD. The difference was significant among Turkish patients versus controls (45.2% vs. 19.4%), and between all cases versus controls (36% vs. 15.7%). No associations between CBAVD penetrance and polymorphisms rs 1982073, rs 1800471, or rs 1801708 were observed. CONCLUSION(S): Our findings indicate that endothelin receptor type A polymorphism rs 5335 may be associated with CBAVD penetrance. To our knowledge, this is the first study to investigate genetic modifiers relevant to CBAVD.
Comments [show]
None has been submitted yet.
No. Sentence Comment
68 Portuguese CFTR alleles Spanish CFTR alleles Turkish CFTR alleles 5T 22 F508del 11 5T 20 F508del 14 5T 9 D1152H 14 R334W 5 D443Ya 3 D110H 3 R117H 3 G576Aa 3 F508del 2 S1235R 3 R668Ca 3 3041-11del7 2 N1303K 2 G542X 2 1767del6 2 P205S 2 R117H 2 2789þ5G>A 2 D614G 2 V232D 2 CFTRdele2(ins186) 2 G542X 1 L997F 1 3120þ1G>A 1 L206W 1 H609R 1 G1130A 1 V562I 1 N1303H 1 M952I 1 I507del 1 L206W 1 365insT 1 3272-26A>G 1 3272-26A/G 1 E585X 1 2789þ5G>A 1 L15P 1 2752-15C>G 1 G576Aa 1 R347H 1 R334Q 1 R668Ca 1 2689insG 1 R347H 1 CFTRdele2,3 1 R1070W 1 E831X 1 L1227S 1 I 1027T 1 R1070W 1 E831X 1 3272-26A>G 1 L997F 1 I853F 1 A349V 1 6T 1 Note: CFTR ¼ cystic fibrosis transmembrane conductance regulator.
X
ABCC7 p.Asn1303His 20100616:68:362
status: NEW[hide] CFTR mutations in the Algerian population. J Cyst Fibros. 2008 Jan;7(1):54-9. Epub 2007 Jun 14. Loumi O, Ferec C, Mercier B, Creff J, Fercot B, Denine R, Grangaud JP
CFTR mutations in the Algerian population.
J Cyst Fibros. 2008 Jan;7(1):54-9. Epub 2007 Jun 14., [PMID:17572159]
Abstract [show]
The nature and frequency of the major CFTR mutations in the North African population remain unclear, although a small number of CFTR mutation detection studies have been done in Algeria and Tunisia, showing largely European mutations such as F508del, G542X and N1303K, albeit at different frequencies, which presumably emerged via population admixture with Caucasians. Some unique mutations were identified in these populations. This is the first study that includes a genetic and clinical evaluation of CF patients living in Algeria. In order to offer an effective diagnostic service and to make accurate risk estimates, we decided to identify the CFTR mutations in 81 Algerian patients. We carried out D-HPLC, chemical-clamp denaturing gradient gel electrophoresis, multiplex amplification analysis of the CFTR gene and automated direct DNA sequencing. We identified 15 different mutations which account for 58.5% of the CF chromosomes. We used a quantitative PCR technique (quantitative multiplex PCR short fragment fluorescence analysis) to screen for deletion/duplication in the 27 exons of the gene. Taking advantage of the homogeneity of the sample, we report clinical features of homozygous CF patients. As CFTR mutations have been detected in males with infertility, 46 unrelated Algerian individuals with obstructive azoospermia were also investigated.
Comments [show]
None has been submitted yet.
No. Sentence Comment
16 Still, 3 mutations may be specific to the Algerian [7-9] population (A141D, L227R, and N1303H) and 2 to the Tunisian population (T665S and 2766del8).
X
ABCC7 p.Asn1303His 17572159:16:87
status: NEW[hide] High heterogeneity of CFTR mutations and unexpecte... J Cyst Fibros. 2004 Dec;3(4):265-72. des Georges M, Guittard C, Altieri JP, Templin C, Sarles J, Sarda P, Claustres M
High heterogeneity of CFTR mutations and unexpected low incidence of cystic fibrosis in the Mediterranean France.
J Cyst Fibros. 2004 Dec;3(4):265-72., [PMID:15698946]
Abstract [show]
In this report, we present updated spectrum and frequency of mutations of the CFTR gene that are responsible for cystic fibrosis (CF) in Languedoc-Roussillon (L-R), the southwestern part of France. A total of 75 different mutations were identified by DGGE in 215 families, accounting for 97.6% of CF genes and generating 88 different mutational genotypes. The frequency of p.F508del was 60.23% in L-R versus 67.18% in the whole country and only five other mutations (p.G542X, p.N1303K, p.R334W, c.1717-1G>A, c.711+1G>T) had a frequency higher than 1%. The mutations were scattered over 20 exons or their border. This sample representing only 5.7% of French CF patients contributed to 24% of CFTR mutations reported in France. This is one of the highest molecular allelic heterogeneity reported so far in CF. We also present the result of a neonatal screening program based on a two-tiered approach "IRT/20 mutations/IRT" analysis on blood spots, implemented in France with the aim to improve survival and quality of life of patients diagnosed before clinical onset. This 18-month pilot project showed an unexpected low incidence of CF (1/8885) in South of France, with only six CF children detected among 43,489 neonates born in L-R, and 13 among 125,339 neonates born in Provence-Alpes-Cote-d'Azur (PACA).
Comments [show]
None has been submitted yet.
No. Sentence Comment
69 of chromosomes (frequency %) p.E1104X 17b 2 (0.47) p.R1158X 19 3 (0.70) p.R1162X 19 2 (0.47) c.3659delC 19 1 (0.23) c.3737delA 19 2 (0.47) p.I1234V 19 1 (0.23) c.3849+10kbCNT intron 19 4 (0.93) c.3850-1GNA intron 19 1 (0.23) p.G1244E 20 1 (0.23) p.W1282X 20 2 (0.47) p.N1303H 21 1 (0.23) p.N1303K 21 13 (3.02) p.Q1313X 21 1 (0.23) c.4382delA 24 1 (023) Mutations described for the first time by our laboratory appear in bold.
X
ABCC7 p.Asn1303His 15698946:69:269
status: NEW[hide] Spectrum of CFTR mutations in cystic fibrosis and ... Hum Mutat. 2000;16(2):143-56. Claustres M, Guittard C, Bozon D, Chevalier F, Verlingue C, Ferec C, Girodon E, Cazeneuve C, Bienvenu T, Lalau G, Dumur V, Feldmann D, Bieth E, Blayau M, Clavel C, Creveaux I, Malinge MC, Monnier N, Malzac P, Mittre H, Chomel JC, Bonnefont JP, Iron A, Chery M, Georges MD
Spectrum of CFTR mutations in cystic fibrosis and in congenital absence of the vas deferens in France.
Hum Mutat. 2000;16(2):143-56., [PMID:10923036]
Abstract [show]
We have collated the results of cystic fibrosis (CF) mutation analysis conducted in 19 laboratories in France. We have analyzed 7, 420 CF alleles, demonstrating a total of 310 different mutations including 24 not reported previously, accounting for 93.56% of CF genes. The most common were F508del (67.18%; range 61-80), G542X (2.86%; range 1-6.7%), N1303K (2.10%; range 0.75-4.6%), and 1717-1G>A (1.31%; range 0-2.8%). Only 11 mutations had relative frequencies >0. 4%, 140 mutations were found on a small number of CF alleles (from 29 to two), and 154 were unique. These data show a clear geographical and/or ethnic variation in the distribution of the most common CF mutations. This spectrum of CF mutations, the largest ever reported in one country, has generated 481 different genotypes. We also investigated a cohort of 800 French men with congenital bilateral absence of the vas deferens (CBAVD) and identified a total of 137 different CFTR mutations. Screening for the most common CF defects in addition to assessment for IVS8-5T allowed us to detect two mutations in 47.63% and one in 24.63% of CBAVD patients. In a subset of 327 CBAVD men who were more extensively investigated through the scanning of coding/flanking sequences, 516 of 654 (78. 90%) alleles were identified, with 15.90% and 70.95% of patients carrying one or two mutations, respectively, and only 13.15% without any detectable CFTR abnormality. The distribution of genotypes, classified according to the expected effect of their mutations on CFTR protein, clearly differed between both populations. CF patients had two severe mutations (87.77%) or one severe and one mild/variable mutation (11.33%), whereas CBAVD men had either a severe and a mild/variable (87.89%) or two mild/variable (11.57%) mutations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
109 h M1K, K14X, W19X, 211delG, G27E, R31C, 237insA, 241delAT, Q39X, 244delTA, 296+2T>C, 297-3C>T, W57X+F87L, 306delTAGA, P67L, A72D, 347delC, R75Q, 359insT, 394delT, 405+4A>G, Q98R, 457TAT>G, R117H+5T, R117H+I1027T, R117L, R117P, H139R, A141D, M152V, N186K, D192N, D192del, E193X, 711+1G>A, 711+3A>G, 712-1G>T, L206F, W216X, C225R, Q237E, G241R, 852del22, 876-14del12, 905delG, 993del5, E292K, Y304X, F311del, 1161delC, R347L, R352Q, W361R, 1215delG, S364P, S434X, D443Y, S466X, C491R, T501A, I506T, F508C, I507del+F508C, F508del+L467F, 1774delCT, R553G, 1802delC, 1806delA, A559E, Y563N, 1833delT, Y569C, Y569H, Y569X, G576X, G576A, T582I, 1898+3A>G+186-13C>G, 1918delGC, R600G, L610S, G628R, 2043delG, 2118del4, E664X, 2174insA, Q689X, K698R, K716X, L732X, 2347delG, 2372del8, R764X, 2423delG, S776X, 2634insT, 2640delT, C866Y, 2752-1G>T, W882X, Y913C, V920M, 2896insAG, H939D, H939R, D979V, D985H, D993Y, 3120G>A, I1005R, 3195del6, 3293delA, 3320ins5, W1063X, A1067T, 3359delCT, T1086I, W1089X, Y1092X+S1235R, W1098X, E1104X, R1128X, 3532AC>GTA, 3548TCAT>G, M1140del, 3600G>A, R1162L, 3667ins4, 3732delA+K1200E, S1206X, 3791delC, S1235R+5T, Q1238R, Q1238X, 3849+4A>G, T1246I, 3869insG, S1255P, R1283K, F1286S, 4005+1G>T, 4006-8T>A, 4015delA, N1303H, N1303I, 4172delGC, 4218insT, 4326delTC, Q1382X, 4375-1C>T, 4382delA, D1445N, CF40kbdel4-10, Cfdel17b.
X
ABCC7 p.Asn1303His 10923036:109:1242
status: NEW[hide] SSCP analysis: a blind sensitivity trial. Hum Mutat. 1997;10(1):65-70. Jordanova A, Kalaydjieva L, Savov A, Claustres M, Schwarz M, Estivill X, Angelicheva D, Haworth A, Casals T, Kremensky I
SSCP analysis: a blind sensitivity trial.
Hum Mutat. 1997;10(1):65-70., [PMID:9222762]
Abstract [show]
Studies of the sensitivity of SSCP analysis usually have been performed under conditions contrary to the rules of quality control trials and have produced widely different results. We have performed a blind trial of the sensitivity of SSCP analysis for the detection of mutations in fragments up to 500 bp in length under a fixed single set of electrophoretic conditions. The mutation detection rate was 84%. In addition, we have identified a second mutation in nine samples. All these mutations are polymorphisms, including a novel polymorphism 1248 + 52T/C first reported in the present work.
Comments [show]
None has been submitted yet.
No. Sentence Comment
22 List of Mutations Included in the Experiment and Original Method of Detection Used by the Referring Laboratory Referring Probe Original method laboratory no.a Mutation Exon of detection Original SSCP conditions Institut de 1 1677delTA 10 Heteroduplexes Recerca 1 1859G/C 12 DDGE Oncologica, 3 W1282X 20 SSCPb 6% 19:1 (AA:bisAA) 4°C 5h 30W Department 4 delF508 10 Heteroduplexes de Genetica 4 Q1313X 20 SSCPb 6% 19:1 (AA:bisAA) 4°C 5h 30W Molecular, 5 1609delCA 10 SSCPb 6% 19:1 (AA:bisAA) RT 28h 10W10% glycerol Barcelona, 7 T582R 12 DGGE Spain 8 1898+3G→A ivs 12 DGGE Molecular 910085 1161delC 7 SSCP/Heteroduplexes 9% 49:1 (AA:bisAA) 4°C 20 h 10V/cm Genetics 860176 1138insG 7 SSCP/Heteroduplexes 9% 49:1 (AA:bisAA) 4°C 20 h 10V/cm Laboratory, 930215 1154insTC 7 SSCP/Heteroduplexes 9% 49:1 (AA:bisAA) 4°C 20 h 10V/cm Royal 930838 delF508 10 SSCP/Heteroduplexes 9% 49:1 (AA:bisAA) 4°C 20 h 10V/cm Manchester 930127 delI507 10 SSCP/Heteroduplexes 9% 49:1 (AA:bisAA) 4°C 20 h 10V/cm Children`s 931205 Q493X 10 SSCP/Heteroduplexes 9% 49:1 (AA:bisAA) 4°C 20 h 10V/cm Hospital, 900592 V520F 10 SSCP/Heteroduplexes 9% 49:1 (AA:bisAA) 4°C 20 h 10V/cm UK G12984 S489X 10 SSCP/Heteroduplexes 9% 49:1 (AA:bisAA) 4°C 20 h 10V/cm 910143 G551D 11 ARMS 930274 S549N 11 SSCP/Heteroduplexes 10% 49:1 (AA:bisAA) 4°C 20 h 10V/cm 920132 1811+1G→C ivs 11 SSCP/Heteroduplexes 10% 49:1 (AA:bisAA) 4°C 20 h 10V/cm 930140 1898+1G→A ivs 12 SSCP/Heteroduplexes 930334 W1282X 20 SSCP/Heteroduplexes 7.25% 49:1 (AA:bisAA) 4°C 20 h 10V/cm 140735 3850-1G→A 20 SSCP/Heteroduplexes 7.25% 49:1 (AA:bisAA) 4°C 20 h 10 V/cm Laboratoire 293 G551D 11 SSCPb 5% 19:1 (AA:bisAA) 4°C 5 h 50W and de Biochimie 5% 19:1 (AA:bisAA) RT 18h 8W 10%glycerol Genetique, 324 S549R 11 ASO Hybridization Centre 649 1898+1G→A ivs 12 DGGE Hospitalier 583 E585X 12 DGGE Universitaire 710 L967S 15 DGGE Montpellier, 325 S945L 15 SSCPb 5% 19:1 (AA:bisAA) 4° 5h 50W and France 5% 19:1 (AA:bisAA) RT 18h 8W 10%glycerol 473 N1303H 21 SSCPb 5% 19:1 (AA:bisAA)4°C 5h 50W and 5% 19:1 (AA:bisAA) RT 18h 8W 10%glycerol 216 300delA 3 SSCP 5% 19:1 (AA:bisAA)4°C 5h 50W and 5% 19:1 (AA:bisAA) RT 18h 8W 10%glycerol 287 394delTT 3 SSCP 5% 19:1 (AA:bisAA)4°C 5h 50W and 5% 19:1 (AA:bisAA) RT 18h 8W 10%glycerol 559 R74W 3 SSCP 5% 19:1 (AA:bisAA)4°C 5h 50W and 5% 19:1 (AA:bisAA) RT 18h 8W 10%glycerol 237 P67L 3 DGGE 1023 R75X 3 DGGE 885 1215delG 7 DGGE 113 Y122X 4 DGGE, SSCP 356 621+1G→T ivs 4 SSCP 5% 19:1 (AA:bisAA)4°C 5h 50W and 5% 19:1 (AA:bisAA) RT 18h 8W 10%glycerol 709 621+2T→G ivs 4 SSCP 5% 19:1 (AA:bisAA)4°C 5h 50W and 5% 19:1 (AA:bisAA) RT 18h 8W 10%glycerol 802 I148T 4 DGGE 1016 Q98R 4 DGGE V75 R117H 4 SSCP 5% 19:1 (AA:bisAA) 4°C 5 h 50W and 5% 19:1 (AA:bisAA) RT 18h 8W 10%glycerol a Identification numbers given by referring laboratories.
X
ABCC7 p.Asn1303His 9222762:22:2080
status: NEW57 Type of Mutations Detected by SSCP Analysis in This Study Type of mutation Mutation Mutation characteristics Detected by SSCP analysis Deletions 1677delTA deletion of TA from 1677 Yes delF508 deletion of 3 bp from 1655 Yes delI507 deletion of 3 bp from 1648 Yes 1609delCA deletion of CA from 1609 Yes 1161delC deletion of C at 1161 Yes 300delA deletion of A at 300 Yes 394delTT deletion of TT from 394 Yes 1215delG deletion of G at 1215 No Insertions 1138insG insertion of G after 1138 Yes 1154insTC insertion of TC after 1154 Yes Base 1859G/C Yes substitutions W1282X G→A at 3978 Yes Q1313X C→T at 4069 Yes T582R C→G at 1877 Yes 1898+3G→A A→G at 1898+3 Yes Q493X C→T at 1609 Yes V520F G→T at 1690 Yes S489X C→A at 1598 Yes G551D G→A at 1784 No S549N G→A at 1778 Yes 1811+1G→C G→C at 1811+1 Yese 1898+1G→A G→A at 1898 Yes 3850-1G→A G→A at 3850-1 Yes S549R T→G at 1779 Yes E585X G→T at 1885 Yes L967S C→T at 2966 Yes S945L C→T at 2966 No N1303H A→C at 4039 Yes R74W C→T at 352 Yes P67L C→T at 332 Yes R75X C→T at 355 Yes Y122X T→A at 498 No 621+1G→T G→T at 621+1 No 621+2T→G T→G at 621+2 No I148T T→C at 575 Yes Q98R A→G at 425 Yes R117H G→A at 482 Yes FIGURE 1.
X
ABCC7 p.Asn1303His 9222762:57:1077
status: NEW[hide] Genotype-phenotype relationships in a cohort of ad... Eur Respir J. 1996 Nov;9(11):2207-14. Hubert D, Bienvenu T, Desmazes-Dufeu N, Fajac I, Lacronique J, Matran R, Kaplan JC, Dusser DJ
Genotype-phenotype relationships in a cohort of adult cystic fibrosis patients.
Eur Respir J. 1996 Nov;9(11):2207-14., [PMID:8947061]
Abstract [show]
In cystic fibrosis (CF), relationships between genotype and phenotype have been shown for pancreatic status but not for pulmonary disease. One hundred and ten adult CF patients were classified according to the expected effect of their mutations on cystic fibrosis transmembrane conductance regulator (CFTR) protein: Group 1 (n=48) included deltaF508 homozygotes; Group 2 (n=26), patients with two "severe" mutations and no expected CFTR production; Group 3 (n=17), patients with expected partly functional CFTR corresponding to at least one "mild" mutation; Group 4 (n=19), patients with no mutation identified or only one identified "severe" mutation. As compared to Groups 1 and 2: patients from Groups 3 and 4 had higher arterial oxygen tension (Pa,O2) (9.5+/-1.9 and 9.9+/-1.5 vs 8.8+/-1.5 and 8.3+/-1.7 kPa, respectively p<0.02); and a slower decline in their pulmonary function, estimated by the mean annual loss in forced vital capacity (FVC) (1.2+/-1.0 and 1.5+/-1.1 vs 2.0+/-0.9 and 2.2+/-1.0%, respectively; p<0.01) and in forced expiratory volume in one second (FEV1) (1.7+/-1.1 and 1.9+/-1.3 vs 2.6+/-1.0 and 2.8+/-1.0%, respectively; p<0.005). They had fewer episodes of colonization of the airways by Pseudomonas aeruginosa, and colonization occurred at a more advanced age (median age 25 and 19 vs 15 and 17 yrs, respectively; p<0.01) and required fewer intravenous antibiotic courses (p<0.01). Pancreatic insufficiency was less frequent in Groups 3 (23%) and 4 (63%) than in Groups 1 (100%) and 2 (96%). This study suggests that the phenotype of adult cystic fibrosis patients, including the severity of the lung disease, is related to the severity of the cystic fibrosis transmembrane conductance regulator mutations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
77 - Genotype of the 110 CF patients: details of the CF mutations and classification into four groups Genotype Genotype Pts groups n 1 ∆F508/∆F508 48* 2 ∆F508/G542X 6 ∆F508/E827X 3† ∆F508/R553X 2 ∆F508/W1282X 2 ∆F508/E595X 1 ∆F508/E60X 1 ∆F508/W846X 1 ∆F508/1078delT 1 ∆F508/2143delT 1 ∆F508/2347delG 1 ∆F508/3659delC 1 ∆F508/4382delA 1 ∆F508/2183 AA→G 1 ∆F508/1717-1 G→A 1 ∆F508/1811+1.6 kb A→G 1 E595X/Y1092X 1 1717-1 G→A/1078delT 1 3 ∆F508/I336K 1 ∆F508/G27E 1 ∆F508/D192N 1 ∆F508//I980K 1 ∆F508/P205S 1 ∆F508/2789+5 G→A 1 ∆F508/3272-26 A→G 1 G542X/3849+10 kb C→T 2‡ G542X/2789+5 G→A 1 W361R/297-3 C→T 1 G551D/1717-1 G→A 1 N1303H/2183 AA→G 1 2789+5 G→A/2183 AA→G 1 R1070Q/D1152H 1 R1070Q/unidentified 1 S1251N/unidentified 1 4 ∆F508/unidentified 7 ∆I507/unidentified 2 1811+1.6 kb A→G/unidentified 1 1161delC/unidentified 1 unidentified/unidentified 8 *: two patients are brothers; †: three brothers; ‡: two sisters.
X
ABCC7 p.Asn1303His 8947061:77:839
status: NEWX
ABCC7 p.Asn1303His 8947061:77:875
status: NEW[hide] Sensitivity of single-strand conformation polymorp... Hum Mol Genet. 1994 May;3(5):801-7. Ravnik-Glavac M, Glavac D, Dean M
Sensitivity of single-strand conformation polymorphism and heteroduplex method for mutation detection in the cystic fibrosis gene.
Hum Mol Genet. 1994 May;3(5):801-7., [PMID:7521710]
Abstract [show]
The gene responsible for cystic fibrosis (CF) contains 27 coding exons and more than 300 independent mutations have been identified. An efficient and optimized strategy is required to identify additional mutations and/or to screen patient samples for the presence of known mutations. We have tested several different conditions for performing single-stranded conformation polymorphism (SSCP) analysis in order to determine the efficiency of the method and to identify the optimum conditions for mutation detection. Each exon and corresponding exon boundaries were amplified. A panel of 134 known CF mutations were used to test the efficiency of detection of mutations. The SSCP conditions were varied by altering the percentage and cross-linking of the acrylamide, employing MDE (an acrylamide substitute), and by adding sucrose and glycerol. The presence of heteroduplexes could be detected on most gels and in some cases contributed to the ability to distinguish certain mutations. Each analysis condition detected 75-98% of the mutations, and all of the mutations could be detected by at least one condition. Therefore, an optimized SSCP analysis can be used to efficiently screen for mutations in a large gene.
Comments [show]
None has been submitted yet.
No. Sentence Comment
121 1078delT (35), L327R (Ravnik-Glavac a al., unpublished), R334W (36), D36K (31), R347L (26), R347P (14), A349V (26), R352Q (30), 1221delCT (34); Exon 8: W401X (31), 1342-1G-C (25); Exon 9: G458V (37), 1525 -1G-A (38); Exon 10: S492F (34), Q493X (39), 1609delCA (40,17), deltaI507 (39,41), deltaF5O8 (3), 1717-1G-A (39,42); Exon 11: G542X (39), S549N, G551D, R553X (43), R553Q (44), A559T (43), R560K (Fine et al., pers. comm.), R560T (39); Exon 12: Y563N (39), 1833delT (Schwartz et al., pers. comm.), P574H (39), 1898 + 1G-C (31), 1898+3A-G (Ferrari et al., pers. comm.); Exon 13: G628R(G-C) (31), Q685X (Firec et al., pers. comm.), K716X (26), L719X (Dork etal., pers. comm.), 2522insC (15), 2556insAT (45), E827X (34); Exon 14a: E831X (Ffrec et al., pers. comm.), R851X (29), 2721delll (31), C866Y (Audrezet et al., pers. comm.); Exon 14b: 2789+5G-A (Highsmith et al., pers. comm.); Exon 15: 2907denT (21), 2991del32 (Dark and TQmmler, pers. comm.), G970R (31); Exon 16: S977P, 3100insA (D6rk et al., pers. comm.); Exon 17a: I1005R (Dork and TQmmler, pers. comm.), 3272-1G-A (46); Exon 17b: H1054D (F6rec et al., pers. comm.), G1061R (Fdrec et al., pers. comm.), 332Oins5, R1066H, A1067T (34), R1066L (Fe"rec etal., pers. comm.), R1070Q (46), E1104X (Zielenski el al., pers. comm.), 3359delCT (46), L1077P (Bozon « a/., pers. comm.), H1085R (46), Y1092X (Bozon etal., pers. comm.), W1098R, M1101K (Zielenski et al., pers. comm.); Exon 18: D1152H (Highsmith et al., pers. comm.); Exon 19:R1162X (36), 3659delC (39), 3662delA (25), 3667del4 (Chillon et al., pers. comm.), 3737ddA (35), 3821ddT (15), I1234V (35), S1235R (31), Q1238X (26), 3849G-A (25), 385O-3T-G (38); Exon20:3860ins31 (Chillon etal., pers. comm.), S1255X (47), 3898insC (26), 3905insT (Malik et al., pers. comm.), D127ON (48), W1282X (49), Q1291R (Dork et al., pers. comm.), Exon 21: N1303H (35), N13O3K (50), W1316X (43); Exon 22: 11328L/4116delA (Dork and TQmmler, pers. comm.), E1371X (25); Exon 23: 4374+ 1G-T (38); Exon 24: 4382delA (Claustres et al., pers. comm.).
X
ABCC7 p.Asn1303His 7521710:121:1857
status: NEW[hide] The spectrum of cystic fibrosis mutations. Trends Genet. 1992 Nov;8(11):392-8. Tsui LC
The spectrum of cystic fibrosis mutations.
Trends Genet. 1992 Nov;8(11):392-8., [PMID:1279852]
Abstract [show]
Although the major mutation causing cystic fibrosis accounts for almost 70% of mutant chromosomes screened, almost 300 sequence alterations have been identified in the gene during the past two and a half years. At least 230 of these mutations are probably associated with disease. This rapid accumulation of data is in part due to the highly coordinated effort by members of the Cystic Fibrosis Genetic Analysis Consortium. The information is not only essential to genetic diagnosis, but also will aid in understanding the structure and function of the protein, and possibly in correlating genotype with phenotype.
Comments [show]
None has been submitted yet.
No. Sentence Comment
123 8 NO. 11 m []~EVIEWS G551D R553Q G551S I L558S aI~7 S5491 I I 1&559T A455F E5040 I&F508 V520F SS49NII IIR560T PS74H I G458V G480C $492F /" • ss,9 II III* oa. / III / NBF1 ~t ~t NBF2 I I I I I III I I I 11234V G1244E IS1255P D1270N II I Q1291H N1303K G1349D S1251N W1282R] F1286S N1303H Q1283M, FIG[] Cystic fibrosis (missense) mutations located within the two presumptive ATP-binding domains (NBF1 and NBF2) of CFTR.
X
ABCC7 p.Asn1303His 1279852:123:287
status: NEW