ABCC7 p.Thr1299Ile
ClinVar: |
c.3896C>T
,
p.Thr1299Ile
?
, not provided
c.3897A>G , p.Thr1299= ? , Conflicting interpretations of pathogenicity |
CF databases: |
c.3896C>T
,
p.Thr1299Ile
(CFTR1)
?
, The above mutation was detected by SSCP and characterized by direct sequencing of Swiss CF patients.
|
Predicted by SNAP2: | A: D (85%), C: D (85%), D: D (91%), E: D (95%), F: D (91%), G: D (91%), H: D (91%), I: D (91%), K: D (91%), L: D (91%), M: D (91%), N: D (85%), P: D (91%), Q: D (91%), R: D (95%), S: N (66%), V: D (91%), W: D (95%), Y: D (91%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, G: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: N, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Two buffer PAGE system-based SSCP/HD analysis: a g... Eur J Hum Genet. 1999 Jul;7(5):590-8. Liechti-Gallati S, Schneider V, Neeser D, Kraemer R
Two buffer PAGE system-based SSCP/HD analysis: a general protocol for rapid and sensitive mutation screening in cystic fibrosis and any other human genetic disease.
Eur J Hum Genet. 1999 Jul;7(5):590-8., [PMID:10439967]
Abstract [show]
The large size of many disease genes and the multiplicity of mutations complicate the design of an adequate assay for the identification of disease-causing variants. One of the most successful methods for mutation detection is the single strand conformation polymorphism (SSCP) technique. By varying temperature, gel composition, ionic strength and additives, we optimised the sensitivity of SSCP for all 27 exons of the CFTR gene. Using simultaneously SSCP and heteroduplex (HD) analysis, a total of 80 known CF mutations (28 missense, 22 frameshift, 17 nonsense, 13 splicesite) and 20 polymorphisms was analysed resulting in a detection rate of 97.5% including the 24 most common mutations worldwide. The ability of this technique to detect mutations independent of their nature, frequency, and population specificity was confirmed by the identification of five novel mutations (420del9, 1199delG, R560S, A613T, T1299I) in Swiss CF patients, as well as by the detection of 41 different mutations in 198 patients experimentally analysed. We present a three-stage screening strategy allowing analysis of seven exons within 5 hours and analysis of the entire coding region within 1 week, including sequence analysis of the variants. Additionally, our protocol represents a general model for point mutation analysis in other genetic disorders and has already been successfully established for OTC deficiency, collagene deficiency, X-linked myotubular myopathy (XLMTM), Duchenne and Becker muscular dystrophy (DMD, BMD), Wilson disease (WD), Neurofibromatosis I and II, Charcot-Marie-Tooth disease, hereditary neuropathy with liability to pressure palsies, and defects in mitochondrial DNA. No other protocol published so far presents standard SSCP/HD conditions for mutation screening in different disease genes.
Comments [show]
None has been submitted yet.
No. Sentence Comment
3 Using simultaneously SSCP and heteroduplex (HD) analysis, a total of 80 known CF mutations (28 missense, 22 frameshift, 17 nonsense, 13 splicesite) and 20 polymorphisms was analysed resulting in a detection rate of 97.5% including the 24 most common mutations worldwide. The ability of this technique to detect mutations independent of their nature, frequency, and population specificity was confirmed by the identification of five novel mutations (420del9, 1199delG, R560S, A613T, T1299I) in Swiss CF patients, as well as by the detection of 41 different mutations in 198 patients experimentally analysed.
X
ABCC7 p.Thr1299Ile 10439967:3:482
status: NEW57 T1299I A transversion C- > T at nucleotide position 4028 located in exon 21 leading to the exchange of the amino acid Thr by a Ile. In nine patients we found only one mutation, the second mutation being not detectable by our screening system.
X
ABCC7 p.Thr1299Ile 10439967:57:0
status: NEW102 Figure 4 SSCP gel demonstrating new mutations (*) in exon 4 (420del9), exon 7 (1199delG), exon 12 (R560S), exon 13 (A613T), and exon 21 (T1299I) of the CFTR gene compared with three control patterns.
X
ABCC7 p.Thr1299Ile 10439967:102:137
status: NEW[hide] Newborn screening for cystic fibrosis in Wisconsin... J Pediatr. 2005 Sep;147(3 Suppl):S73-7. Rock MJ, Hoffman G, Laessig RH, Kopish GJ, Litsheim TJ, Farrell PM
Newborn screening for cystic fibrosis in Wisconsin: nine-year experience with routine trypsinogen/DNA testing.
J Pediatr. 2005 Sep;147(3 Suppl):S73-7., [PMID:16202788]
Abstract [show]
OBJECTIVE: To describe the development and follow-up confirmatory results of the routine cystic fibrosis (CF) newborn screening (NBS) program in Wisconsin. METHODS: CF NBS has been performed on a routine clinical basis in Wisconsin since July 1994. The 2-tiered immunoreactive trypsinogen (IRT)/DNA technique was used on dried blood on filter paper spots. From July 1994 to February 2002, mutation analysis was for the DeltaF508 allele. Beginning in March 2002, multimutation analysis of 25 CF mutations was performed. Infants with a positive result on NBS were seen in certified CF centers for sweat testing by means of quantitative pilocarpine iontophoresis, and families received genetic counseling. RESULTS: From July 1994 to February 2002, there were 120 cases of CF detected by means of NBS (509,794 infants screened), with 53 DeltaF508 homozygotes and 67 compound heterozygotes. There were 8 clinically diagnosed cases of CF (no DeltaF508 allele). The CF incidence was 1:3983 (95%CI, 1:3373-1:4774). From March 2002 to June 2003, multimutation analysis identified 21 cases of classic CF (90,142 infants screened). Sweat tests were successfully performed in infants younger than 1 month. CONCLUSIONS: Early diagnosis of CF through NBS was successfully performed, with an estimated sensitivity rate of 99% using the IRT/25 CFTR multimutation assay.
Comments [show]
None has been submitted yet.
No. Sentence Comment
57 (The latter case did not have testing for the 3199del6; a third mutation, T1299I, was identified by a referral lab.)
X
ABCC7 p.Thr1299Ile 16202788:57:74
status: NEW[hide] Spectrum of mutations in the CFTR gene in cystic f... Ann Hum Genet. 2007 Mar;71(Pt 2):194-201. Alonso MJ, Heine-Suner D, Calvo M, Rosell J, Gimenez J, Ramos MD, Telleria JJ, Palacio A, Estivill X, Casals T
Spectrum of mutations in the CFTR gene in cystic fibrosis patients of Spanish ancestry.
Ann Hum Genet. 2007 Mar;71(Pt 2):194-201., [PMID:17331079]
Abstract [show]
We analyzed 1,954 Spanish cystic fibrosis (CF) alleles in order to define the molecular spectrum of mutations in the CFTR gene in Spanish CF patients. Commercial panels showed a limited detection power, leading to the identification of only 76% of alleles. Two scanning techniques, denaturing gradient gel electrophoresis (DGGE) and single strand conformation polymorphism/hetroduplex (SSCP/HD), were carried out to detect CFTR sequence changes. In addition, intragenic markers IVS8CA, IVS8-6(T)n and IVS17bTA were also analyzed. Twelve mutations showed frequencies above 1%, p.F508del being the most frequent mutation (51%). We found that eighteen mutations need to be studied to achieve a detection level of 80%. Fifty-one mutations (42%) were observed once. In total, 121 disease-causing mutations were identified, accounting for 96% (1,877 out of 1,954) of CF alleles. Specific geographic distributions for the most common mutations, p.F508del, p.G542X, c.1811 + 1.6kbA > G and c.1609delCA, were confirmed. Furthermore, two other relatively common mutations (p.V232D and c.2789 + 5G > A) showed uneven geographic distributions. This updated information on the spectrum of CF mutations in Spain will be useful for improving genetic testing, as well as to facilitate counselling in people of Spanish ancestry. In addition, this study contributes to defining the molecular spectrum of CF in Europe, and corroborates the high molecular mutation heterogeneity of Mediterranean populations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
52 Mutation 0.46-0.35 9 c.1078delT #, p.R347P # 8 p.G85V, c.621 + 1G > T #, p.S549R (T > G) #, p.R553X #, c.3849 + 10kbC > T # 7 p.R347H #, c.1812-1G > A, p.R709X 0.30-0.10 6 p.H199Y, p.P205S, 5 p.R117H #, p.G551D #, p.W1089X, p.Y1092X, CFTR50kbdel 4 c.296 + 3insT, c.1717-1G > A #, c.1949del84, c.3849 + 1G > A 3 p.E92K, c.936delTA, c.1717-8G > A, c.1341G > A, p.A561E, c.2603delT, p.G1244E, [p.D1270N; p.R74W] 2 p.Q2X, p.P5L, CFTRdele2,3, p.S50P, p.E60K, c.405 + 1G > A, c.1677delTA, p.L558S, p.G673X, p.R851X, p.Y1014C, p.Q1100P, p.M1101K, p.D1152H, CFTRdele19, p.G1244V, p.Q1281X, p.Y1381X <0,1 1 c.124del23bp, p.Q30X, p.W57X, c.406-1G > A, p.Q98R, p.E115del, c.519delT, p.L159S, c.711 + 3A > T, p.W202X, c.875 + 1G > A, p.E278del, p.W361R, c.1215delG, p.L365P, p.A399D, c.1548delG, p.K536X, p.R560G, c.1782delA, p.L571S, [p.G576A; p.R668C], p.T582R, p.E585X, c.1898 + 1G > A, c.1898 + 3A > G, c.2051delTT, p.E692X, p.R851L, c.2711delT, c.2751 + 3A > G, c.2752-26A > G, p.D924N, p.S945L, c.3121-1G > A, p.V1008D, p.L1065R, [p.R1070W; p.R668C], [p.F1074L; 5T], p.H1085R, p.R1158X, c.3659delC #, c.3667del4, c.3737delA, c.3860ins31, c.3905insT #, c.4005 + 1G > A, p.T1299I, p.E1308X, p.Q1313X, c.4095 + 2T > A, rearrangements study (n = 4) Mutations identified in CF families with mixed European origin: c.182delT, p.L1254X, c.4010del4.
X
ABCC7 p.Thr1299Ile 17331079:52:1165
status: NEW67 Seven other complex alleles were observed: [c.296 + 3insT; p.V754M], [p.F508del; p.I1027T], [p.S549R; -102T > A], [p.G576A; p.R668C], [p.R1070W; p.R668C], [p.D1270N; p.R74W] and [p.T1299I; p.I148T].
X
ABCC7 p.Thr1299Ile 17331079:67:181
status: NEW[hide] Analysis of genomic CFTR DNA. J Cyst Fibros. 2004 Aug;3 Suppl 2:7-10. Ferec C, Le Marechal C, Audrezet MP, Farinha CM, Amaral MD, Gallati S, Sanz J, Steiner B, Mouchel N, Harris A, Schwarz MJ
Analysis of genomic CFTR DNA.
J Cyst Fibros. 2004 Aug;3 Suppl 2:7-10., [PMID:15463917]
Abstract [show]
There are numerous methodologies available for the analysis of genomic CFTR DNA. We present here the basic tools to allow a thorough investigation of the CFTR gene, beginning with the identification of potential regulatory regions using DNase I hypersensitive sites, and continuing with methods for the detection of mutations: denaturing High Performance Liquid Chromatography (dHPLC), Single Strand Conformation Polymorphism (SSCP), and allele-specific oligonucleotide (ASO) hybridisation. Also provided is a comprehensive set of PCR primers for the amplification of most regions of the CFTR gene. Full details of the methodologies given are to be found at the European Working Group on CFTR Expression website http://central.igc.gulbenkian.pt/cftr/vr/transcripts.html.
Comments [show]
None has been submitted yet.
No. Sentence Comment
98 More recently, the protocol proved to be able to detect mutations independent of their nature, frequency, and population specificity, which is also confirmed by the identification of novel mutations (i.e. 420del9, 1199delG, R560S, A613T, T1299I) in Swiss CF patients.
X
ABCC7 p.Thr1299Ile 15463917:98:238
status: NEW97 More recently, the protocol proved to be able to detect mutations independent of their nature, frequency, and population specificity, which is also confirmed by the identification of novel mutations (i.e. 420del9, 1199delG, R560S, A613T, T1299I) in Swiss CF patients.
X
ABCC7 p.Thr1299Ile 15463917:97:238
status: NEW[hide] Inconclusive diagnosis of cystic fibrosis after ne... Pediatrics. 2015 Jun;135(6):e1377-85. doi: 10.1542/peds.2014-2081. Epub 2015 May 11. Ooi CY, Castellani C, Keenan K, Avolio J, Volpi S, Boland M, Kovesi T, Bjornson C, Chilvers MA, Morgan L, van Wylick R, Kent S, Price A, Solomon M, Tam K, Taylor L, Malitt KA, Ratjen F, Durie PR, Gonska T
Inconclusive diagnosis of cystic fibrosis after newborn screening.
Pediatrics. 2015 Jun;135(6):e1377-85. doi: 10.1542/peds.2014-2081. Epub 2015 May 11., [PMID:25963003]
Abstract [show]
OBJECTIVES: To prospectively study infants with an inconclusive diagnosis of cystic fibrosis (CF) identified by newborn screening (NBS; "CF screen positive, inconclusive diagnosis" [CFSPID]) for disease manifestations. METHODS: Infants with CFSPID and CF based on NBS from 8 CF centers were prospectively evaluated and monitored. Genotype, phenotype, repeat sweat test, serum trypsinogen, and microbiology data were compared between subjects with CF and CFSPID and between subjects with CFSPID who did (CFSPID-->CF) and did not (CFSPID-->CFSPID) fulfill the criteria for CF during the first 3 years of life. RESULTS: Eighty-two subjects with CFSPID and 80 subjects with CF were enrolled. The ratio of CFSPID to CF ranged from 1:1.4 to 1:2.9 in different centers. CFTR mutation rates did not differ between groups; 96% of subjects with CFSPID and 93% of subjects with CF had 2 mutations. Subjects with CFSPID had significantly lower NBS immunoreactive trypsinogen (median [interquartile range]:77 [61-106] vs 144 [105-199] mug/L; P < .0001) than did subjects with CF. Pseudomonas aeruginosa and Stenotrophomonas maltophilia were isolated in 12% and 5%, respectively, of subjects with CFSPID. CF was diagnosed in 9 of 82 (11%) subjects with CFSPID (genotype and abnormal sweat chloride = 3; genotype alone = 4; abnormal sweat chloride only = 2). Sweat chloride was abnormal in CFSPID-->CF patients at a mean (SD) age of 21.3 (13.8) months. CFSPID-->CF patients had significantly higher serial sweat chloride (P < .0001) and serum trypsinogen (P = .009) levels than did CFSPID-->CFSPID patients. CONCLUSIONS: A proportion of infants with CFSPID will be diagnosed with CF within the first 3 years. These findings underscore the need for clinical monitoring, repeat sweat testing at age 2 to 3 years, and extensive genotyping.
Comments [show]
None has been submitted yet.
No. Sentence Comment
103 In combination with a disease-causing mutation, R117H-7T has been associated with diagnostic uncertainties in CF, TABLE 2 Genotypes of Subjects With CFSPID According to Initial Sweat Chloride Measurements Sweat Chloride ,30 mmol/L Sweat Chloride 30-59 mmol/L Allele 1 Allele 2 n Allele 1 Allele 2 n F508dela R117H (7T)b 9 F508dela R117Cd 2c F508dela 5Tb 2 F508dela L206Wd 2c F508dela D1152Hb 2 F508dela P67Ld 1c F508dela R117Hb 1 F508dela 5Tb 8 F508dela D1270Nb 1 F508dela R117H (7T)b 3 F508dela L997F 3 F508dela R117Hb 3 F508dela 1716G.A 1 F508dela S1455X 1c F508dela 621+3G.A 1 F508dela R170H 1 F508dela I1328T 1 F508dela I148T 1 F508dela L967S 1 F508dela L997F 1 F508dela M1137T 1 F508dela Q1476X 1 F508dela Y301C 1 F508dela S1235R 1 1717-1G.Aa D1152Hb 1 F508dela T1299I 1 2183AA.Ga 5Tb 1 2183AA.Ga R117Cd 1 2183AA.Ga S431G 1 2789+5G.Aa R117H (7T)b 1 3849+10kbC.Ta 3041-15T.G 1 3849+10kbC.Ta 3041-15T.G 1 621+1G.Ta R117H (7T)b 1 621+1G.Ta G1069Rb 1 711+1G.Ta D1152Hb 1 G542Xa L206Wd 1c G542Xa R117H (7T)b 1 G542Xa C1410T 1 G542Xa D1152Hb 1 G551Da 5Tb 1 G551Da D1152Hb 1 N1303Ka 5Tb 1 N1303Ka D1152Hb 1 R1162Xa R117H (7T)b 1c N1303Ka E527G 1 R553Xa 5Tb 1 R117H (5T)a 5Tb 1 R553Xa L997F 1 R117H (7T)b R117H (7T)b 1 R560Ta G576A 1 R117H (7T)b 3041_71G.C 1 W1282Xa 5Tb 2 R117Hb Q1476X 1 F508dela - 2 R117H (5T)a - 1 -, no mutation identified on the second allele.
X
ABCC7 p.Thr1299Ile 25963003:103:767
status: NEW