ABCC6 p.Arg1164Gln
ClinVar: |
c.3490C>T
,
p.Arg1164*
D
, Pathogenic
|
LOVD-ABCC6: |
p.Arg1164*
D
p.Arg1164Gln D |
Predicted by SNAP2: | A: D (75%), C: D (75%), D: D (91%), E: D (85%), F: D (85%), G: D (80%), H: D (85%), I: D (85%), K: D (71%), L: D (85%), M: D (80%), N: D (66%), P: D (95%), Q: D (75%), S: D (63%), T: D (71%), V: D (85%), W: D (91%), Y: D (80%), |
Predicted by PROVEAN: | A: N, C: D, D: N, E: N, F: D, G: N, H: N, I: D, K: N, L: D, M: N, N: N, P: N, Q: N, S: N, T: N, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Pseudoxanthoma elasticum is a recessive disease ch... J Invest Dermatol. 2006 Apr;126(4):782-6. Ringpfeil F, McGuigan K, Fuchsel L, Kozic H, Larralde M, Lebwohl M, Uitto J
Pseudoxanthoma elasticum is a recessive disease characterized by compound heterozygosity.
J Invest Dermatol. 2006 Apr;126(4):782-6., [PMID:16410789]
Abstract [show]
Pseudoxanthoma elasticum (PXE) is caused by mutations in the ABCC6 gene. Historically, PXE has been suggested to be inherited either in an autosomal dominant or autosomal recessive manner. To determine the exact mode of inheritance of PXE and to address the question of phenotypic expression in mutation carriers, we identified seven pedigrees with affected individuals in two different generations and sequenced the entire coding region of ABCC6 in affected individuals, presumed carriers with a limited phenotype and unaffected family members. Two allelic mutations were identified in each individual with unambiguous diagnosis of PXE, as well as in those with only minimal clinical signs suggestive of PXE but with positive skin biopsy. Missense mutations were frequently detected in the latter cases. In conclusion, PXE is inherited in an autosomal recessive manner and presence of disease in two generations is due to pseudodominance.
Comments [show]
None has been submitted yet.
No. Sentence Comment
29 Among the other mutations identified, three were novel missense mutations: W218C, T811M, and R1164Q.
X
ABCC6 p.Arg1164Gln 16410789:29:93
status: NEW31 R1164Q/R518X R1164Q/R1164Q R1164Q/- -/- Family 5 Del23-29/R391G Del23-29/Del23-29 Family 3 R1141X/del23-29 R1141X/del23-29 Del23-29/- R1141X/T811M Family 1 Figure 1.
X
ABCC6 p.Arg1164Gln 16410789:31:0
status: NEWX
ABCC6 p.Arg1164Gln 16410789:31:13
status: NEWX
ABCC6 p.Arg1164Gln 16410789:31:20
status: NEWX
ABCC6 p.Arg1164Gln 16410789:31:27
status: NEW49 In Family 5, the proband was compound heterozygote for R1164Q/R518X, the missense mutation being inherited from the clinically unaffected father while the nonsense mutation was either a de novo mutation or reflected germline mosaicism in the clinically unaffected mother whose peripheral blood DNA did not carry this mutation.
X
ABCC6 p.Arg1164Gln 16410789:49:55
status: NEW50 The grandmother of the proband was homozygous for the R1164Q mutation.
X
ABCC6 p.Arg1164Gln 16410789:50:54
status: NEW[hide] Mutation detection in the ABCC6 gene and genotype-... J Med Genet. 2007 Oct;44(10):621-8. Epub 2007 Jul 6. Pfendner EG, Vanakker OM, Terry SF, Vourthis S, McAndrew PE, McClain MR, Fratta S, Marais AS, Hariri S, Coucke PJ, Ramsay M, Viljoen D, Terry PF, De Paepe A, Uitto J, Bercovitch LG
Mutation detection in the ABCC6 gene and genotype-phenotype analysis in a large international case series affected by pseudoxanthoma elasticum.
J Med Genet. 2007 Oct;44(10):621-8. Epub 2007 Jul 6., [PMID:17617515]
Abstract [show]
BACKGROUND: Pseudoxanthoma elasticum (PXE), an autosomal recessive disorder with considerable phenotypic variability, mainly affects the eyes, skin and cardiovascular system, characterised by dystrophic mineralization of connective tissues. It is caused by mutations in the ABCC6 (ATP binding cassette family C member 6) gene, which encodes MRP6 (multidrug resistance-associated protein 6). OBJECTIVE: To investigate the mutation spectrum of ABCC6 and possible genotype-phenotype correlations. METHODS: Mutation data were collected on an international case series of 270 patients with PXE (239 probands, 31 affected family members). A denaturing high-performance liquid chromatography-based assay was developed to screen for mutations in all 31 exons, eliminating pseudogene coamplification. In 134 patients with a known phenotype and both mutations identified, genotype-phenotype correlations were assessed. RESULTS: In total, 316 mutant alleles in ABCC6, including 39 novel mutations, were identified in 239 probands. Mutations were found to cluster in exons 24 and 28, corresponding to the second nucleotide-binding fold and the last intracellular domain of the protein. Together with the recurrent R1141X and del23-29 mutations, these mutations accounted for 71.5% of the total individual mutations identified. Genotype-phenotype analysis failed to reveal a significant correlation between the types of mutations identified or their predicted effect on the expression of the protein and the age of onset and severity of the disease. CONCLUSIONS: This study emphasises the principal role of ABCC6 mutations in the pathogenesis of PXE, but the reasons for phenotypic variability remain to be explored.
Comments [show]
None has been submitted yet.
No. Sentence Comment
262 Genotype-phenotype correlations The comparison of subjects whose mutations would probably have resulted in no functional protein with those whose mutations would probably have resulted in some functional Table 2 Distinct mutations identified in the international case series of 271 patients with PXE Nucleotide change*À Predicted consequenceÀ Frequency (alleles) Exon-intron location Domain affected` Mutant alleles (%) References1 c.105delA p.S37fsX80 2 2 0.6 28 c.177-185del9 p.R60_Y62del 1 2 0.3 9, 28 c.179del12ins3 p. R60_W64del L60_R61ins 1 2 0.3 c.220-1gRc SJ 1 IVS 2 0.3 c.724gRt p.E242X 1 7 0.3 c.938insT FS 1 8 0.3 25 c.998+2delT SJ 1 IVS 8 0.3 2, 21 c.998+2del2 SJ 1 IVS 8 0.3 18 c.951cRg p.S317R 2 9 TM6 0.6 28 c.1087cRt p.Q363X 1 9 0.3 c.1091gRa p.T364R 1 9 TM7 0.3 9, 19, 21, 28 c.1132cRt p.Q378X 4 9 1.2 9, 17-19, 28, 37 c.1144cRt p.R382W 2 9 IC4 0.6 c.1171aRg p.R391G 3 9 IC4 0.9 9, 18, 28, 37 c.1176gRc p.K392N 1 9 IC4 0.3 c.1388tRa p.L463H 1 11 TM9 0.3 c.1484tRa p.L495H 1 12 IC5 0.3 28 c.1552cRt p.R518X 2 12 0.6 18, 19, 27, 28, 37 c.1553gRa p.R518Q 4 12 IC5 1.2 18, 19, 24, 28, 31 c.1603tRc p.S535P 1 12 TM10 0.3 c.1703tRc p.F568S 1 13 TM11 0.3 24 c.1798cRt p.R600C 1 14 TM11 0.3 c.1857insC FS 1 14 0.3 c.1987gRt p.G663C 1 16 NBF1 0.3 c.1999delG FS 1 16 0.3 c.2070+5GRA SJ 2 IVS 16 0.6 c.2093aRc p.Q698P 2 17 NBF1 0.6 c.2097gRt p.E699D 1 17 NBF1 0.3 c.2177tRc p.L726P 1 17 NBF1 0.3 c.2237ins10 FS 2 17 0.6 c.2252tRa p.M751K 1 18 NBF1 0.3 20, 37 c.2263gRa p.G755R 2 18 NBF1 0.6 c.2278cRt p.R760W 3 18 NBF1 0.9 20, 28, 32, 37 c.2294gRa p.R765Q 2 18 NBF1 0.6 20-22, 25, 28, 32, 37 c.2329gRa p.D777N 1 18 NBF1 0.3 c.2359gRt p.V787I 1 18 NBF1 0.3 c.2432cRt p.T811M 1 19 IC6 0.3 6 c.2643gRt p.R881S 1 20 IC6 0.3 c.2787+1GRT SJ 9 IVS 21 2.8 17, 20, 24, 28, 31, 37 c.2814cRg p.Y938X 1 22 0.3 c.2820insC FS 1 22 0.3 c.2831cRt p.T944I 1 22 TM12 0.3 c.2848gRa p.A950T 1 22 TM12 0.3 c.2974gRc p.G992R 1 22 TM13 0.3 2, 42 c.3340cRt p.R1114C 2 24 IC8 0.6 19, 28, 32, 37, 41 c.3389cRt p.T1130M 3 24 IC8 0.9 18, 19, 21, 22, 28, 30, 32, 37, 41 c.3398gRc p.G1133A 1 24 IC8 0.3 c.3412gRa p.R1138W 7 24 IC8 2.2 28, 30, 37 c.3413cRt p.R1138Q 7 24 IC8 2.2 18, 19, 24, 25, 28, 30, 32, 37, 41 c.3415gRa p.A1139T 2 24 IC8 0.6 c.3415gRa & c.2070+5GRA* p.A1139T & SJ 1 24, IVS 16 IC8 0.3 c.3415gRa & c.4335delG* p.A1139T & FS 1 24, 30 IC8 0.3 c.3421cRt p.R1141X 92 24 29.3 5, 9, 15,18, 19, 21, 22, 24, 28, 30-32, 33, 37, 41 c.3427cRt p.Q1143X 1 24 0.3 c.3490cRt p.R1164X 15 24 4.7 18, 27, 28, 31, 33 c.3491gRa p.R1164Q 1 24 IC8 0.3 28 c.3661cRt p.R1221C 1 26 IC9 0.3 21, 22, 28, 29 c.3662gRa p.R1221H 2 26 IC9 0.6 40 c.3676cRa p.L1226I 1 26 IC9 0.3 c.3722gRa p.W1241X 2 26 0.6 c.3774insC FS 2 27 0.6 c.3775delT p.G1259fsX1272 3 27 0.9 15, 25, 28, 41 c.3880-3882del p.K1294del 1 27 0.3 c.3883-5GRA SJ 1 IVS 27 0.3 c.3892gRt p.V1298F 1 28 NBF2 0.3 25 c.3904gRa p.G1302R 7 28 NBF2 2.2 21, 22, 25, 28 c.3907gRc p.A1303P 1 28 NBF2 0.3 21, 22, 25, 28 c.3912delG FS 1 28 0.3 28 c.3940cRt p.R1314W 4 28 NBF2 1.2 24, 25, 32, 36 c.3941gRa p.R1314Q 1 28 NBF2 0.3 25, 28, 32, 36, 41 c.4004tRa p.L1335Q 1 28 NBF2 0.3 c.4015cRt p.R1339C 16 28 NBF2 5.0 19, 25, 28, 33 c.4016gRa p.R1339H 2 28 NBF2 0.6 c.4025tRc p.I1342T 1 28 NBF2 0.3 protein did not yield significant differences.
X
ABCC6 p.Arg1164Gln 17617515:262:2516
status: NEW[hide] Novel clinico-molecular insights in pseudoxanthoma... Hum Mutat. 2008 Jan;29(1):205. Vanakker OM, Leroy BP, Coucke P, Bercovitch LG, Uitto J, Viljoen D, Terry SF, Van Acker P, Matthys D, Loeys B, De Paepe A
Novel clinico-molecular insights in pseudoxanthoma elasticum provide an efficient molecular screening method and a comprehensive diagnostic flowchart.
Hum Mutat. 2008 Jan;29(1):205., [PMID:18157818]
Abstract [show]
Pseudoxanthoma elasticum (PXE) is a heritable connective tissue disorder characterized by ocular, cutaneous and cardiovascular manifestations. It is caused by mutations in the ABCC6 gene (chr. 16p13.1), encoding a transmembrane transporter protein, the substrate and biological function of which are currently unknown. A comprehensive clinical and molecular study of 38 Belgian PXE probands and 21 relatives (4 affected and 17 carriers) was performed. An extensive clinical evaluation protocol was implemented with serial fundus, skin and cardiovascular evaluation. We report on 14 novel mutations in the ABCC6 gene. We observed extensive variability in severity of both cutaneous and ocular lesions. The type of skin lesion however usually remained identical throughout the evolution of the disorder, while ophthalmological progression was mainly due to functional decline. Peripheral artery disease (53%) and stroke (15%) were significantly more prevalent than in the general population (10-30% and 0.3-0.5% respectively). Interestingly, we also observed a relatively high incidence of subclinical peripheral artery disease (41%) in our carrier population. We highlight the significance of peripheral artery disease and stroke in PXE patients as well as the subclinical manifestations in carriers. Through follow-up data we gained insight into the natural history of PXE. We propose a cost- and time-efficient two-step method of ABCC6 analysis which can be used in different populations. Additionally, we created a diagnostic flowchart and attempted to define the role of molecular analysis of ABCC6 in the work-up of a PXE patient.
Comments [show]
None has been submitted yet.
No. Sentence Comment
83 Genotype and Phenotype of 42 Belgian PXE Patients Patient S e x Age/Clinical score at initial presentation Age/Clinical score at most recent follow-up Mutations* Allele 1 Allele 2 01-001 F 52 - S0, E2 65 - S0, E3, HT p.R1141X c.3421C>T p.R760Q c.2279G>A 02-001 M 18 - S1, E2, VR-I 18 - S1, E2, VR-I p.R1141X c.3421C>T p.R1141X c.3421C>T 03-001 F 59 - S1, E4 75 - S1, E4, HT, IC, VR-I p.R1141X c.3421C>T p.N793L c.2379C>G 04-001 F 36 - S3, E2 36 - S3, E2 p.N466Y c.1396A>T p.R1339H c.4016G>A 05-001 F 26 - S1, E4 43 - S3, E4, VR-I p.R1141X c.3421C>T p.T364M c.1091C>T 06-001 F 36 - S2, E4 44 - S2, E4, P p.A1303P c.3907G>C None found - 07-001 M 48 - S1, E2, HT 58 - S1, E4, HT p.R1141X c.3421C>T p.R1141X c.3421C>T 08-001 F 26 - S1, E0 44 - S2, E2 p.R1141X c.3421C>T p.R760Q c.2279G>A 09-001 M 49 - S0, E3, P, GIB 65 - S2, E4, P, HT, VR-I, GIB p.A1303P c.3907G>C None found - 10-001 F 46 - S1, E2 63 - S3, E4, HT, AP,VR-I p.R1141X c.3421C>T p.R1141X c.3421C>T 11-001 M 25 - S1, E2, GIB 37 - S1, E3, GIB p.R1141X c.3421C>T None found - 12-001 F 52 - S1, E4, CI, HT, VR-I 52 - S1, E4, IC, HT, VR-I p.R1141X c.3421C>T p.R1141X c.3421C>T 12-002 F 40 - S1, E2, HT, MVP, VR-I 40 - S1, E2, HT, MVP, VR-I p.R1141X c.3421C>T p.R1141X c.3421C>T 13-001 F 65 - S0, E2 80 - S0, E2, P, VR-I p.R1141X c.3421C>T p.R1141X c.3421C>T 13-002 F 57 - S3, E4 73 - S3, E4, HT, CI, VR-I p.R1141X c.3421C>T p.R1141X c.3421C>T 14-001 F 23 - S1, E2 27 - S1, E2 p.S398R c.1194C>G - c.3364delT 15-001 F 27 - S1, E2 27 - S1, E2 p.R1138W c.3412C>T p.R1221H c.3662G>A 16-001 M 51 - S2, E2 54 - S2, E2 p.R1141X c.3421C>T p.R1141X c.3421C>T 17-001 M 42 - S1, E3, IC 58 - S1, E3, IC Del23-29 - p.R518Q c.1553G>A 18-001 M 63 - S1, E4 63 - S1, E4 p.E1400K c.4198G>A None found - 19-001 F 34 - S2, E2 50 - S2, E2 p.A1303P c.3907G>C p.R1398X c.4192C>T 20-001 F 52 - S2, E2, HT, IC, GIB 68 - S2, E4, HT, IC, GIB p.R1141X c.3421C>T None found - 21-001 M 20 - S1, E2 26 - S1, E2 p.R1141X c.3421C>T p.R1141X c.3421C>T 22-001 M 53 - S2, E2, IC, AP 69 - S2, E2, HT, IC, AP p.M751K c.2252T>A p.R1164Q c.3491G>A 23-001 F 20 - S1, E2 27 - S1, E2, P, VR-I p.G666V c.1996G>T - c.1868-5T>G 24-001 M 54 - S1, E2 57 - S1, E2 p.T500P c.1498A>C p.E521D c.1563G>C 25-001 F 50 - S1, E3, HT, MI 57 - S2, E3, HT, MI p.R1141X c.3421C>T p.R1141X c.3421C>T 26-001 M 52 - S2, E4, HT 68 - S2, E4, HT, CI p.M751K c.2252T>A Del23-29 - 27-001 F 61 - S3, E4 68 - S3, E4, P, CI, AP p.R1141X c.3421C>T - c.4104delC Allele 2 28-001 F 31 - S1, E2 32 - S1, E2 - c.1674DelC p.R765W c.2293C>T Patient S e x Age/Clinical score at initial presentation Age/Clinical score at most recent follow-up Mutations* Allele 1 Allele 2 29-001 M 30 - S1, E3 32 - S1, E3 p.E125K c.373G>A p.L1025P c.3074T>C 30-001 M 65 - S0, E2, HT, CI, MI 66 - S0, E2, HT, CI, MI p.G1405S c.4213G>A None found - 31-001 F 38 - S1, E4 39 - S1, E4 p.R1141X c.3421C>T Del23-29 - 32-001 M 22 - S1, E2 36 - S1, E2 p.R1141X c.3421C>T p.R518Q c.1553G>A 33-001 F 45 - S2, E3, P 61 - S2, E3, P, VR-II p.R1141X c.3421C>T p.R1141X c.3421C>T 34-001 F 65 - S1, E4, HT 81 - S1, E4, HT, AP p.R1141X c.3421C>T p.T1301I c.3902C>T 35-001 F 62 - S2, E2 78 - S2, E2, HT - c.175_179del p.G1354R c.4060G>C 35-002 F 58 - S2, E2 74 - S2, E4 - c.175_179del p.G1354R c.4060G>C 35-003 M 67 - S2, E2 79 - S2, E3, HT, VR-I - c.175_179del p.G1354R c.4060G>C 36-001 M 53 - S1, E4 59 - S1, E4, HT, AP p.R1114H c.3341G>A p.Q1237X c.3709C>T 37-001 M 18 - S3, E2 18 - S3, E2 p.Q981H c.2943G>T - c.3507-3C>A 38-001 F 27 - S1, E2 27 - S1, E2 p.G1263R c.3787G>A - c.4182delG Table 1 represents the sex of all patients (M = male; F= female) and the age (in years - italics), respectively at initial presentation and last follow-up.
X
ABCC6 p.Arg1164Gln 18157818:83:2046
status: NEW[hide] Pseudoxanthoma elasticum: a streamlined, ethnicity... Clin Transl Sci. 2010 Dec;3(6):295-8. doi: 10.1111/j.1752-8062.2010.00243.x. Larusso J, Ringpfeil F, Uitto J
Pseudoxanthoma elasticum: a streamlined, ethnicity-based mutation detection strategy.
Clin Transl Sci. 2010 Dec;3(6):295-8. doi: 10.1111/j.1752-8062.2010.00243.x., [PMID:21167005]
Abstract [show]
Pseudoxanthoma elasticum (PXE), an autosomal recessive multisystem disorder, is caused by mutations in the ABCC6 gene, and approximately 300 distinct mutations representing >1000 mutant alleles have been disclosed thus far. Few population-based studies have reported mutational hotspots in some geographic areas. In this study, we attempted to correlate recurring mutations with the individuals' ethnic origin. Specifically, we plotted our international database of 70 families from distinct or mixed ethnic backgrounds against their mutations. The frequent p.R1141X mutation was distributed widely across Europe, while deletion of exons 23-29 (del23-29) was encountered in Northern Europe and in Northern Mediterranean countries. p.R1138W may be a marker for French descent, evidenced by its presence also in French Canadians. The splice site transition mutation 3736-1G-->A was seen in the neighboring countries Greece and Turkey, whereas 2542 delG occurs only in the Japanese. Two mutations seem to be present worldwide without evidence of a founder effect, p.Q378X and p.R1339C, suggesting the presence of mutational hotspots. Knowledge of this distribution will allow us to streamline mutation screening through a targeted, stepwise approach when the ethnicity of a patient is known. This will facilitate the identification of individuals at risk, improving their care to prevent ophthalmological and vascular disease.
Comments [show]
None has been submitted yet.
No. Sentence Comment
52 Exon 24 also harbored other mutations (p.R1138Q, p.R1164X, and p.R1164Q) that did not appear to have a predilection for specific ethnicities.
X
ABCC6 p.Arg1164Gln 21167005:52:65
status: NEW