ABCC6 p.Arg1357Trp
ClinVar: |
c.4069C>T
,
p.Arg1357Trp
N
, Likely benign
|
LOVD-ABCC6: |
p.Arg1357Trp
D
|
Predicted by SNAP2: | A: D (95%), C: D (95%), D: D (95%), E: D (95%), F: D (95%), G: D (95%), H: D (95%), I: D (95%), K: D (95%), L: D (95%), M: D (95%), N: D (95%), P: D (95%), Q: D (95%), S: D (95%), T: D (95%), V: D (95%), W: D (95%), Y: D (95%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, G: D, H: D, I: D, K: N, L: D, M: D, N: D, P: D, Q: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Identification of two novel missense mutations (p.... Intern Med. 2004 Dec;43(12):1171-6. Noji Y, Inazu A, Higashikata T, Nohara A, Kawashiri MA, Yu W, Todo Y, Nozue T, Uno Y, Hifumi S, Mabuchi H
Identification of two novel missense mutations (p.R1221C and p.R1357W) in the ABCC6 (MRP6) gene in a Japanese patient with pseudoxanthoma elasticum (PXE).
Intern Med. 2004 Dec;43(12):1171-6., [PMID:15645653]
Abstract [show]
Pseudoxanthoma elasticum (PXE) is a rare, inherited, systemic disease of elastic tissue that in particular affects the skin, eyes, and cardiovascular system. Recently, the ABCC6 (MRP6) gene was found to cause PXE. A defective type of ABCC6 gene (16pl3.1) was determined in two Japanese patients with PXE. In order to determine whether these patients have a defect in ABCC6 gene, we examined each of 31 exons and flanking intron sequences by PCR methods (SSCP screening and direct sequencing). We found two novel missense variants in exon 26 and 29 in a compound heterozygous state in the first patient. One is a missense mutation (c.3661C>T; p.R1221C) in exon 26 and the other is a missense mutation (c.4069C>T; p.R1357W) in exon 29. These mutations have not been detected in our control panel of 200 alleles. To our knowledge, this is the first report of mutation identification in the ABCC6 gene in Japanese PXE patients. The second patient was homozygous for 2542_2543delG in ABCC6 gene and heterozygous for 6 kb deletion of LDL-R gene. This case is the first report of a genetically confirmed case of double mutations both in PXE and FH loci.
Comments [show]
[show]
No. Sentence Comment
5 One is a missense mutation (c.3661C>T; p.R1221C) in exon 26 and the other is a missense mutation (c.4069C>T; p.R1357W) in exon 29.
X
ABCC6 p.Arg1357Trp 15645653:5:111
status: NEW20 Internal Medicine Vol. 43, No. 12 (December 2004) 1171 Identification of Two Novel Missense Mutations (p.R1221C and p.R1357W) in the ABCC6 (MRP6) Gene in a Japanese Patient with Pseudoxanthoma Elasticum (PXE) Yoshihiro NOJI, Akihiro INAZU, Toshinori HIGASHIKATA, Atsushi NOHARA, Masa-aki KAWASHIRI, Wenxin YU, Yasuhiro TODO, Tsuyoshi NOZUE, Yoshihide UNO*, Senshu HIFUMI** and Hiroshi MABUCHI CASE REPORT From the Molecular Genetics of Cardiovascular Disorders, Division of Cardiovascular Medicine (The Second Department of Internal Medicine), Graduate School of Medical Science, Kanazawa University, Kanazawa and *the Department of Cardiology, Ishikawa Prefectural Central Hospital, Kanazawa and **the Department of Internal Medicine, Hokuriku Central Hospital, Oyabe Received for publication March 3, 2004; Accepted for publication August 28, 2004 Reprint requests should be addressed to Dr. Yoshihiro Noji, the Molecular Genetics of Cardiovascular Disorders, Division of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641 Patients and methods Case presentations Case 1 Case 1 was a 23-year-old female, with yellow-colored skin lesions since her early teens.
X
ABCC6 p.Arg1357Trp 15645653:20:118
status: NEW50 One was a heterozygous missense mutation (c.3661C>T; p.R1221C) in exon 26 and the other was a heterozygous missense mutation (c.4096C>T; p.R1357W) in exon 29 of the ABCC6 gene.
X
ABCC6 p.Arg1357Trp 15645653:50:139
status: NEW62 In the present study, two novel missense mutations, p.R1221C and p.R1357W, were found in a young female Internal Medicine Vol. 43, No. 12 (December 2004)1172 Internal Medicine Vol. 43, No. 12 (December 2004) Novel Mutations in the ABCC6 Gene in Japanese PXE Patients 1173 Figure 1.
X
ABCC6 p.Arg1357Trp 15645653:62:67
status: NEW71 p.R1221C and p.R1357W are novel disease-causing mutations in the ABCC6 gene that have not been previously reported.
X
ABCC6 p.Arg1357Trp 15645653:71:15
status: NEW73 p.R1357W was found in NBD2.
X
ABCC6 p.Arg1357Trp 15645653:73:2
status: NEW75 We would expect a similar effect for the p.R1357W.
X
ABCC6 p.Arg1357Trp 15645653:75:43
status: NEW88 (Family 1) In the family of the case 1, her mother was revealed to be heterozygous for p.R1357W.
X
ABCC6 p.Arg1357Trp 15645653:88:89
status: NEW98 They did not examine the exons in which we identified as disease-causing mutations in our patients that include exon 19 [2542_2543delG], exon 26 [p.R1221C], and exon 29 [p.R1357W].
X
ABCC6 p.Arg1357Trp 15645653:98:172
status: NEW[hide] Molecular genetics of pseudoxanthoma elasticum: ty... Hum Mutat. 2005 Sep;26(3):235-48. Miksch S, Lumsden A, Guenther UP, Foernzler D, Christen-Zach S, Daugherty C, Ramesar RK, Lebwohl M, Hohl D, Neldner KH, Lindpaintner K, Richards RI, Struk B
Molecular genetics of pseudoxanthoma elasticum: type and frequency of mutations in ABCC6.
Hum Mutat. 2005 Sep;26(3):235-48., [PMID:16086317]
Abstract [show]
Pseudoxanthoma elasticum (PXE) is a systemic heritable disorder that affects the elastic tissue in the skin, eye, and cardiovascular system. Mutations in the ABCC6 gene cause PXE. We performed a mutation screen in ABCC6 using haplotype analysis in conjunction with direct sequencing to achieve a mutation detection rate of 97%. This screen consisted of 170 PXE chromosomes in 81 families, and detected 59 distinct mutations (32 missense, eight nonsense, and six likely splice-site point mutations; one small insertion; and seven small and five large deletions). Forty-three of these mutations are novel variants, which increases the total number of PXE mutations to 121. While most mutations are rare, three nonsense mutations, a splice donor site mutation, and the large deletion comprising exons 23-29 (c.2996_4208del) were identified as relatively frequent PXE mutations at 26%, 5%, 3.5%, 3%, and 11%, respectively. Chromosomal haplotyping with two proximal and two distal polymorphic markers flanking ABCC6 demonstrated that most chromosomes that carry these relatively frequent PXE mutations have related haplotypes specific for these mutations, which suggests that these chromosomes originate from single founder mutations. The types of mutations found support loss-of-function as the molecular mechanism for the PXE phenotype. In 76 of the 81 families, the affected individuals were either homozygous for the same mutation or compound heterozygous for two mutations. In the remaining five families with one uncovered mutation, affected showed allelic compound heterozygosity for the cosegregating PXE haplotype. This demonstrates pseudo-dominance as the relevant inheritance mechanism, since disease transmission to the next generation always requires one mutant allelic variant from each parent. In contrast to other previous clinical and molecular claims, our results show evidence only for recessive PXE. This has profound consequences for the genetic counseling of families with PXE.
Comments [show]
None has been submitted yet.
No. Sentence Comment
295 Within the second NBF, R1357W in ABCC6 compares to R1392M in ABCC2.
X
ABCC6 p.Arg1357Trp 16086317:295:23
status: NEW[hide] Pseudoxanthoma elasticum: a streamlined, ethnicity... Clin Transl Sci. 2010 Dec;3(6):295-8. doi: 10.1111/j.1752-8062.2010.00243.x. Larusso J, Ringpfeil F, Uitto J
Pseudoxanthoma elasticum: a streamlined, ethnicity-based mutation detection strategy.
Clin Transl Sci. 2010 Dec;3(6):295-8. doi: 10.1111/j.1752-8062.2010.00243.x., [PMID:21167005]
Abstract [show]
Pseudoxanthoma elasticum (PXE), an autosomal recessive multisystem disorder, is caused by mutations in the ABCC6 gene, and approximately 300 distinct mutations representing >1000 mutant alleles have been disclosed thus far. Few population-based studies have reported mutational hotspots in some geographic areas. In this study, we attempted to correlate recurring mutations with the individuals' ethnic origin. Specifically, we plotted our international database of 70 families from distinct or mixed ethnic backgrounds against their mutations. The frequent p.R1141X mutation was distributed widely across Europe, while deletion of exons 23-29 (del23-29) was encountered in Northern Europe and in Northern Mediterranean countries. p.R1138W may be a marker for French descent, evidenced by its presence also in French Canadians. The splice site transition mutation 3736-1G-->A was seen in the neighboring countries Greece and Turkey, whereas 2542 delG occurs only in the Japanese. Two mutations seem to be present worldwide without evidence of a founder effect, p.Q378X and p.R1339C, suggesting the presence of mutational hotspots. Knowledge of this distribution will allow us to streamline mutation screening through a targeted, stepwise approach when the ethnicity of a patient is known. This will facilitate the identification of individuals at risk, improving their care to prevent ophthalmological and vascular disease.
Comments [show]
None has been submitted yet.
No. Sentence Comment
62 Noji et al. also identified two novel missense mutations p.R1221C and p.R1357W in a Japanese patient with PXE.
X
ABCC6 p.Arg1357Trp 21167005:62:72
status: NEW[hide] [Pseudoxanthoma elasticum]. Ophthalmologe. 2006 Jun;103(6):537-51; quiz 552-3. Ladewig MS, Gotting C, Szliska C, Issa PC, Helb HM, Bedenicki I, Scholl HP, Holz FG
[Pseudoxanthoma elasticum].
Ophthalmologe. 2006 Jun;103(6):537-51; quiz 552-3., [PMID:16763870]
Abstract [show]
Pseudoxanthoma elasticum (PXE) is an inherited disorder that is associated with accumulation of mineralized and fragmented elastic fibers in the skin, vessel walls, and Bruch's membrane. Clinically, patients exhibit characteristic lesions of the skin (soft, ivory-colored papules in a reticular pattern that predominantly affect the neck), the posterior segment of the eye (peau d'orange, angioid streaks, choroidal neovascularizations), and the cardiovascular system (peripheral arterial occlusive disease, coronary occlusion, gastrointestinal bleeding). There is no causal therapy. Recent studies suggest that PXE is inherited almost exclusively as an autosomal recessive trait. Its prevalence has been estimated to be 1:25,000-100,000. The ABCC6 gene on chromosome 16p13.1 is associated with the disease. Mutations within the ABCC6 gene cause reduced or absent transmembraneous transport that leads to accumulation of substrate and calcification of elastic fibers. Although based on clinical features the diagnosis appears readily possible, variability in phenotypic expressions and the low prevalence may be responsible that the disease is underdiagnosed. This review covers current knowledge of PXE and presents therapeutic approaches.
Comments [show]
None has been submitted yet.
No. Sentence Comment
272 Internetadressen PXE-Selbsthilfegruppe Deutschland : http://www.pxe-groenblad.de PXE International: http://www.pxe.org Tabelle 5 PXE verursachende Mutationen imabcc6-Gen Klassifikation Lokalisation Gen Protein Missense Exon 9 Exon 9 Exon 10 Exon 10 Exon 11 Exon 12 Exon 13 Exon 14 Exon 16 Exon 18 Exon 18 Exon 18 Exon 18 Exon 19 Exon 19 Exon 19 Exon 22 Exon 24 Exon 24 Exon 24 Exon 24 Exon 24 Exon 24 Exon 24 Exon 24 Exon 24 Exon 25 Exon 26 Exon 26 Exon 26 Exon 28 Exon 28 Exon 28 Exon 28 Exon 28 Exon 28 Exon 28 Exon 28 Exon 28 Exon 28 Exon 28 Exon 28 Exon 28 Exon 29 Exon 29 Exon 29 Exon 29 Exon 29 Exon 30 Exon 30 Exon 30 c.1091CaG c.1171AaG c.1233TaG c.1318TaG c.1363GaC c.1553GaA c.1703TaC c.1798CaT c.2018TaC c.2252TaA c.2278CaT c.2294GaA c.2297CaA c.2428GaA c.2458GaC c.2552TaC c.2855TaG c.3340CaT c.3341GaA c.3341GaC c.3362CaG c.3380CaT c.3389CaT c.3412CaT c.3413GaA c.3413GaC c.3608GaA c.3661CaT c.3712GaC c.3715TaC c.3892GaT c.3902CaT c.3904GaA c.3907GaC c.3932GaA c.3940CaT c.3941GaA c.3961GaA c.3976GaA c.4004TaC c.4015CaT c.4036CaT c.4041GaC c.4060GaC c.4069CaT c.4081GaA c.4182GaT c.4198GaA c.4209CaA c.4271TaC c.4377CaT p.T364R p.R391G p.N411K p.C440G p.A455P p.R518Q p.F568S p.R600G p.L673P p.M751K p.R760W p.R765Q p.A766D p.V810M p.A820P p.L851P p.F952C p.R1114C p.R1114H p.R1114P p.S1121W p.M1127T p.T1130M p.R1138W p.R1138Q p.R1138P p.G1203D p.R1221C p.D1238H p.Y1239H p.V1298F p.T1301I p.G1302R p.A1303P p.G1311E p.R1314W p.R1314Q p.G1321S p.D1326N p.L1335P p.R1339C p.P1346S p.Q1347H p.G1354R p.R1357W p.D1361N p.K1394N p.E1400K p.S1403R p.I1424T p.R1459C Klassifikation Lokalisation Gen Protein Nonsense Exon 9 Exon 12 Exon 17 Exon 18 Exon 23 Exon 24 Exon 24 Exon 26 Exon 26 Exon 27 Exon 29 c.1132CaT c.1552CaT c.2247CaT c.2304CaA c.3088CaT c.3421CaT c.3490CaT c.3668GaA c.3709CaT c.3823CaT c.4192CaT p.Q378X p.R518X p.Q749X p.Y768X p.R1030X p.R1141X p.R1164X p.W1223X p.Q1237X p.R1275X p.R1398X Spleißstellen Intron 21 Intron 25 Intron 26 c.2787+1GaT c.3634-3CaA c.3736-1GaA Insertion Exon 8 Exon 25 Exon 30 c.938-939insT c.3544dupC c.4220insAGAA Deletion Exon 2 Exon 2 Exon 3 Exon 8 Exon 9 Exon 16 Exon 16 Exon 18 Exon 19 Exon 22 Exon 27 Exon 29 Exon 29 Exon 30 Exon 31 c.179del9 c.179-195del c.220-222del c.960delC c.1088-1120del c.1944del22 c.1995delG c.2322delC c.2542delG c.2835-2850del16 c.3775delT c.4101delC c.4182delG c.4318delA c.4434delA Intragenische Deletion Exon 15 Exon 18 Exon 23-29 delEx15 delEx18 delEx23-29 Intergenische Deletion ABCC6 delABCC6 Fazit für die Praxis Eine spezifische Behandlung der Grunderkrankung ist nicht bekannt.
X
ABCC6 p.Arg1357Trp 16763870:272:1517
status: NEW
aranyi on 2012-05-05 13:19:37