ABCC6 p.Arg724Lys
LOVD-ABCC6: |
p.Arg724Lys
D
|
Predicted by SNAP2: | A: D (63%), C: D (59%), D: D (80%), E: D (66%), F: D (85%), G: D (75%), H: D (59%), I: D (80%), K: N (57%), L: D (71%), M: D (71%), N: D (66%), P: D (85%), Q: N (61%), S: D (59%), T: D (59%), V: D (71%), W: D (91%), Y: D (85%), |
Predicted by PROVEAN: | A: N, C: D, D: D, E: N, F: D, G: D, H: N, I: D, K: N, L: D, M: D, N: N, P: D, Q: N, S: N, T: N, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Molecular genetics of pseudoxanthoma elasticum: ty... Hum Mutat. 2005 Sep;26(3):235-48. Miksch S, Lumsden A, Guenther UP, Foernzler D, Christen-Zach S, Daugherty C, Ramesar RK, Lebwohl M, Hohl D, Neldner KH, Lindpaintner K, Richards RI, Struk B
Molecular genetics of pseudoxanthoma elasticum: type and frequency of mutations in ABCC6.
Hum Mutat. 2005 Sep;26(3):235-48., [PMID:16086317]
Abstract [show]
Pseudoxanthoma elasticum (PXE) is a systemic heritable disorder that affects the elastic tissue in the skin, eye, and cardiovascular system. Mutations in the ABCC6 gene cause PXE. We performed a mutation screen in ABCC6 using haplotype analysis in conjunction with direct sequencing to achieve a mutation detection rate of 97%. This screen consisted of 170 PXE chromosomes in 81 families, and detected 59 distinct mutations (32 missense, eight nonsense, and six likely splice-site point mutations; one small insertion; and seven small and five large deletions). Forty-three of these mutations are novel variants, which increases the total number of PXE mutations to 121. While most mutations are rare, three nonsense mutations, a splice donor site mutation, and the large deletion comprising exons 23-29 (c.2996_4208del) were identified as relatively frequent PXE mutations at 26%, 5%, 3.5%, 3%, and 11%, respectively. Chromosomal haplotyping with two proximal and two distal polymorphic markers flanking ABCC6 demonstrated that most chromosomes that carry these relatively frequent PXE mutations have related haplotypes specific for these mutations, which suggests that these chromosomes originate from single founder mutations. The types of mutations found support loss-of-function as the molecular mechanism for the PXE phenotype. In 76 of the 81 families, the affected individuals were either homozygous for the same mutation or compound heterozygous for two mutations. In the remaining five families with one uncovered mutation, affected showed allelic compound heterozygosity for the cosegregating PXE haplotype. This demonstrates pseudo-dominance as the relevant inheritance mechanism, since disease transmission to the next generation always requires one mutant allelic variant from each parent. In contrast to other previous clinical and molecular claims, our results show evidence only for recessive PXE. This has profound consequences for the genetic counseling of families with PXE.
Comments [show]
None has been submitted yet.
No. Sentence Comment
209 Type and Frequency of Polymorphisms in ABCC6 Identi'ed in170 Chromosomes of 81 PXE Familiesà Exon/ Intron Nucleotide substitution Amino acid change Location Frequency (] of families) Referencea E 03 c.232G4A p.A78T ABCC6-C2 81 This study, (C,H) IVS 03 c.345112T4C Intron duplication 81 This study IVS 03 c.345126C4T Intron 1 This study IVS 03 c.346À6G4A Intron 10 This study, (C) E 04 c.373G4A p.E125K ABCC6-C1 81 This study, (C) E 04 c.473C4T p.A158V ABCC6-C2 81 This study, (C) IVS 04 c.474113 G4A Intron duplication 2 This study IVS 04 c.474143C4T Intron duplication 80 This study, (C) IVS 04 c.475À76A4C Intron duplication 81 This study IVS 04 c.475À45C4T Intron 3 This study IVS 04 c.475À22T4C Intron duplication 80 This study, (C) E 05 c.549G4A L183L ABCC6 2 This study, (E) IVS 05 c.600123C4T Intron 1 This study E 06 c.645G4A T215T ABCC6 8 This study, (C) IVS 06 c.662112C4T Intron 1 This study, (C) E 07 c.793A4G R265G ABCC6-C1 81 This study, (C,H) IVS 07 c.794136A4C Intron duplication 81 This study, (C) E 08 c.841A4G K281E ABCC6-Cx 81 This study, (H) E 08 c.855C4T T285T ABCC6-C1 81 This study, (C) E 08 c.955A4G I319V ABCC6-Cx 81 This study, (H) E 09 c.1077A4G S359S ABCC6, ABCC6-C1 1 This study, (C,H) E 09 c.1132C4T Q378X ABCC6-C1 81 This study, (C,H) E 09 c.1141T4C L381L ABCC6, ABCC6-C1 81 This study, (C,H) IVS 09 c.117616C4T No SSM Intron 1 This study E 10 c.1233T4C N411N ABCC6 1 This study, (B,L) E 10 c.1245G4A V415V ABCC6 Frequent This study, (B,L) IVS 10 c.133817C4G Intron Frequent This study IVS 10 c.1338120C4G Intron Frequent This study IVS 10 c.1338162G4C Intron Frequent This study IVS 11 c.1432À41A4G Intron Frequent This study, (E) E 12 c.1540G4A V514I ABCC6 1 This study IVS 12 c.1635147C4T Intron Frequent This study E 14 c.1841T4C V614A ABCC6 Frequent This study, (B,E) IVS 14 c.1868À57G4A Intron 3 This study E 15 c.1890C4G T630T ABCC6 Frequent This study, (B,L) E 15 c.1896C4A H632Q ABCC6 Frequent This study, (C,G) E 17 c.2171G4A R724K ABCC6 2 This study E 17 c.2175A4T V725V ABCC6 2 This study E 17 c.2224A4G I742V ABCC6 2 This study E 19 c.2490C4T A830A ABCC6 Frequent This study, (E) E 22 c.2820T4G R940R ABCC6 1 This study E 22 c.2835C4T P945P ABCC6 8 This study, (J) E 22 c.2836C4A L946I ABCC6 3 This study E 22 c.2904G4A L968L ABCC6 1 This study, (J) E 23 c.3190C4T R1064W ABCC6 2 This study IVS 24 c.3507À16T4C No SSM Intron 4 This study IVS 24 c.3507À3C4T No SSM Intron 3 This study E 27 c.3803G4A R1268Q ABCC6 Frequent This study, (C,M) IVS 27 c.3883À24G4A Intron 1 This study IVS 28 c.4041149C4T Intron Frequent This study, (E) IVS 28 c.4042À30C4T Intron Frequent This study IVS 29 c.420819G4A Intron 2 This study E 30 c.4305C4T G1435G ABCC6 1 This study IVS 30 c.4405À31G4A Intron Frequent This study 30 UTR c.4512117G4A UTR 5 This study, (E) 30 UTR c.4512138G4A UTR 1 This study ÃDNA mutation numbering is based on the ABCC6 cDNA sequence (GenBank accession no. AF076622.1) and 11 corresponds to the A of the ATG translation initiation codon of the reference sequence.
X
ABCC6 p.Arg724Lys 16086317:209:2003
status: NEW199 Coding sequence SNPs were considered as neutral (non-disease-causing) when they resulted in a synonymous amino acid substitution or a nonsynonymous substitution that did not cosegregate with the disease haplotype and phenotype (p.V614A, p.R724K, p.I742V, p.L946I, p.R1064W, and p.R1268Q) or did cosegregate with other PXE mutations in linkage disequilibrium in individual families (p.V514I, p.H632Q, and p.R1268Q).
X
ABCC6 p.Arg724Lys 16086317:199:239
status: NEW[hide] Analysis of sequence variations in the ABCC6 gene ... J Vasc Res. 2005 Sep-Oct;42(5):424-32. Epub 2005 Aug 26. Schulz V, Hendig D, Schillinger M, Exner M, Domanovits H, Raith M, Szliska C, Kleesiek K, Gotting C
Analysis of sequence variations in the ABCC6 gene among patients with abdominal aortic aneurysm and pseudoxanthoma elasticum.
J Vasc Res. 2005 Sep-Oct;42(5):424-32. Epub 2005 Aug 26., [PMID:16127278]
Abstract [show]
Abdominal aortic aneurysm (AAA) is characterized by dilatation of arterial walls, which is accompanied by degradation of elastin and collagen molecules. Biochemical and environmental factors are known to be relevant for AAA development, and familial predisposition is well recognized. A connective tissue disorder that is also associated with fragmentation of elastic fibers is Pseudoxanthoma elasticum (PXE). PXE is caused by mutations in the ABCC6 gene and mainly affects dermal, ocular and all vascular tissues. To investigate whether variations in ABCC6 are found in AAA patients and to determine mutations in PXE patients, we analyzed seven selected ABCC6 exons of 133 AAA and 54 PXE patients subjected to mutational analysis. In our cohort of AAA patients, we found five ABCC6 alterations, which result in missense or silent amino acid variants. The allelic frequencies of these sequence variations were not significantly different between AAA patients and healthy controls. Therefore, we suggest that alterations in ABCC6 are not a genetic risk factor for AAA. Mutational screening of the PXE patients revealed 19 different ABCC6 variations, including two novel PXE-causing mutations. These results expand the ABCC6 mutation database in PXE.
Comments [show]
This is erroneously identified as a reported sequence variant. In the cited article E18L is the name of a PCR primer.
aranyi on 2012-05-05 13:15:49
aranyi on 2012-05-05 13:15:49
No. Sentence Comment
97 These sequence variations led to the missense and silent amino acid variants p.Q655R, p.R724K, p.V725V, p.I742V and p.R1418R.
X
ABCC6 p.Arg724Lys 16127278:97:88
status: NEW100 The exon 17 variations p.R724K, p.V725V and p.I742V were identified in a compound heterozygous form in 3 AAA patients and were also found in this state in 1 PXE patient and his 79-year-old unaffected mother, as well as in 2 healthy controls.
X
ABCC6 p.Arg724Lys 16127278:100:25
status: NEW109 In addition, we detected a silent variation (p.V725V) and 14 missense mutations (p.R724K, p.I742V, p.M751K, p.R760W, p.R765Q, p.R1114C, p.R1114H, p.T1130M, p.R1138Q, p.T1301I, p.G1311E, p.R1314Q, p.R1314W and p.S1403R) in their heterozygous, compound heterozygous and homozygous forms in 17 PXE patients.
X
ABCC6 p.Arg724Lys 16127278:109:83
status: NEW112 With the exception of the variants p.R724K, p.V725V and p.I742V, none of the 19 ABCC6 sequence variations identified in our PXE cohort occurred in the group of AAA patients.
X
ABCC6 p.Arg724Lys 16127278:112:37
status: NEW116 The variations p.R1114C and p.G1311E occurred in a heterozygous form in 2 PXE patients, and RFLP or DHPLC analysis revealed that they were not present in our groups of healthy controls Exona Sequence variation Allele frequency AAA patients PXE patients PXE relatives blood donors 16 c.1964A>G (p.Q655R) 1 0 0 0/286 16 c.1990C>T (p.P664S) 0 0 0 1/286 16 c.1995delG (frameshift) 0 3 0 0/286 17 c.2171G>A (p.R724K) 3 1 1 2/254 17 c.2175A>T (p.V725V) 3 1 1 2/254 17 c.2224A>G (p.I742V) 3 1 1 2/254 i-17 IVS17+22T>G 1 0 0 0/254 18 c.2252T>A (p.M751K) 0 2 0 0/204 18 c.2278C>T (p.R760W) 0 1 0 0/204 18 c.2294G>A (p.R765Q) 0 3 0 0/204 24 c.3340C>T (p.R1114C) 0 1 0 0/400 24 c.3341G>A (p.R1114H) 0 1 0 0/400 24 c.3389C>T (p.T1130M) 0 2 0 0/400 24 c.3413G>A (p.R1138Q) 0 2 0 ND 24 c.3421C>T (p.R1141X) 0 28 9 1/1,820b i-24 IVS24+15G>A 1 0 0 ND 28 c.3902C>T (p.T1301I) 0 1 0 ND 28 c.3932G>A (p.G1311E) 0 1 0 0/400 28 c.3940C>T (p.R1314W) 0 1 0 ND 28 c.3941G>A (p.R1314Q) 0 1 1 ND i-28 IVS28+49C>T 59 ND ND ND i-28 IVS28-30C>T 48 ND ND ND 29 c.4182delG (frameshift) 0 3 0 0/400 i-29 IVS29+9G>A 5 ND ND ND 30 c.4209C>A (p.S1403R) 0 1 0 0/244 30 c.4254G>A (p.R1418R) 6 0 0 2/244 i-30 IVS30+11C>G 0 2 0 0/244 23-29 Ex23_Ex29del 0 5 3 ND i = intron; ND = not determined.
X
ABCC6 p.Arg724Lys 16127278:116:405
status: NEW139 Among these, 3 variants (p.R724K, p.V725V and p.I742V) had already been described as ABCC6 polymorphisms [36].
X
ABCC6 p.Arg724Lys 16127278:139:27
status: NEW152 The variants p.R724K, p.V725V, p.I742V and p.R1418R were also assumed not to be a risk factor for AAA formation, because they occurred in healthy controls as well as in our PXE cohort, and their allelic frequencies were not significantly different between AAA patients and healthy subjects.
X
ABCC6 p.Arg724Lys 16127278:152:18
status: NEW[hide] Functional hot spots in human ATP-binding cassette... Protein Sci. 2010 Nov;19(11):2110-21. Kelly L, Fukushima H, Karchin R, Gow JM, Chinn LW, Pieper U, Segal MR, Kroetz DL, Sali A
Functional hot spots in human ATP-binding cassette transporter nucleotide binding domains.
Protein Sci. 2010 Nov;19(11):2110-21., [PMID:20799350]
Abstract [show]
The human ATP-binding cassette (ABC) transporter superfamily consists of 48 integral membrane proteins that couple the action of ATP binding and hydrolysis to the transport of diverse substrates across cellular membranes. Defects in 18 transporters have been implicated in human disease. In hundreds of cases, disease phenotypes and defects in function can be traced to nonsynonymous single nucleotide polymorphisms (nsSNPs). The functional impact of the majority of ABC transporter nsSNPs has yet to be experimentally characterized. Here, we combine experimental mutational studies with sequence and structural analysis to describe the impact of nsSNPs in human ABC transporters. First, the disease associations of 39 nsSNPs in 10 transporters were rationalized by identifying two conserved loops and a small alpha-helical region that may be involved in interdomain communication necessary for transport of substrates. Second, an approach to discriminate between disease-associated and neutral nsSNPs was developed and tailored to this superfamily. Finally, the functional impact of 40 unannotated nsSNPs in seven ABC transporters identified in 247 ethnically diverse individuals studied by the Pharmacogenetics of Membrane Transporters consortium was predicted. Three predictions were experimentally tested using human embryonic kidney epithelial (HEK) 293 cells stably transfected with the reference multidrug resistance transporter 4 and its variants to examine functional differences in transport of the antiviral drug, tenofovir. The experimental results confirmed two predictions. Our analysis provides a structural and evolutionary framework for rationalizing and predicting the functional effects of nsSNPs in this clinically important membrane transporter superfamily.
Comments [show]
None has been submitted yet.
No. Sentence Comment
72 Predictions of the Functional Effects of 40 nsSNPs in ABC Transporters Comon name HUGO name Mutation NBD Prediction BSEP ABCB11 E592Q NBD1 Neutral BSEP ABCB11 N591S NBD1 Neutral BSEP ABCB11 Q558H NBD1 Neutral BSEP ABCB11 V444A NBD1 Neutral BSEP ABCB11 E1186K NBD2 Disease MDR1 ABCB1 P1051A NBD2 Neutral MDR1 ABCB1 S1141T NBD2 Neutral MDR1 ABCB1 T1256K NBD2 Disease MDR1 ABCB1 V1251I NBD2 Neutral MDR1 ABCB1 W1108R NBD2 Disease MRP2 ABCC2 I670T NBD1 Disease MRP2 ABCC2 L849R NBD1 Disease MRP2 ABCC2 C1515Y NBD2 Disease MRP3 ABCC3 D770N NBD1 Neutral MRP3 ABCC3 K718M NBD1 Neutral MRP3 ABCC3 T809M NBD1 Disease MRP3 ABCC3 V765L NBD1 Disease MRP3 ABCC3 Q1365R NBD2 Disease MRP3 ABCC3 R1297H NBD2 Disease MRP3 ABCC3 R1348C NBD2 Disease MRP3 ABCC3 R1381S NBD2 Disease MRP4 ABCC4 G487E NBD1 Disease MRP4 ABCC4 K498E NBD1 Neutral MRP4 ABCC4 R1220Q NBD2 Neutral MRP4 ABCC4 T1142M NBD2 Neutral MRP4 ABCC4 V1071I NBD2 Neutral MRP6 ABCC6 I1330L NBD1 Neutral MRP6 ABCC6 I742V NBD1 Neutral MRP6 ABCC6 P664S NBD1 Neutral MRP6 ABCC6 R724K NBD1 Neutral MRP6 ABCC6 R769K NBD1 Neutral MRP6 ABCC6 A1291T NBD2 Neutral MRP6 ABCC6 E1369K NBD2 Neutral MRP6 ABCC6 G1327E NBD2 Disease MRP6 ABCC6 L1416R NBD2 Disease MRP6 ABCC6 R1268Q NBD2 Disease MRP6 ABCC6 R1461H NBD2 Disease MXR ABCG2 I206L NBD1 Neutral MXR ABCG2 P269S NBD1 Disease MXR ABCG2 Q141K NBD1 Neutral nsSNPs.
X
ABCC6 p.Arg724Lys 20799350:72:1017
status: NEW