ABCC6 p.Tyr768*
LOVD-ABCC6: |
p.Tyr768*
D
|
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] A spectrum of ABCC6 mutations is responsible for p... Am J Hum Genet. 2001 Oct;69(4):749-64. Epub 2001 Aug 31. Le Saux O, Beck K, Sachsinger C, Silvestri C, Treiber C, Goring HH, Johnson EW, De Paepe A, Pope FM, Pasquali-Ronchetti I, Bercovitch L, Marais AS, Viljoen DL, Terry SF, Boyd CD
A spectrum of ABCC6 mutations is responsible for pseudoxanthoma elasticum.
Am J Hum Genet. 2001 Oct;69(4):749-64. Epub 2001 Aug 31., [PMID:11536079]
Abstract [show]
To better understand the pathogenetics of pseudoxanthoma elasticum (PXE), we performed a mutational analysis of ATP-binding cassette subfamily C member 6 (ABCC6) in 122 unrelated patients with PXE, the largest cohort of patients yet studied. Thirty-six mutations were characterized, and, among these, 28 were novel variants (for a total of 43 PXE mutations known to date). Twenty-one alleles were missense variants, six were small insertions or deletions, five were nonsense, two were alleles likely to result in aberrant mRNA splicing, and two were large deletions involving ABCC6. Although most mutations appeared to be unique variants, two disease-causing alleles occurred frequently in apparently unrelated individuals. R1141X was found in our patient cohort at a frequency of 18.8% and was preponderant in European patients. ABCC6del23-29 occurred at a frequency of 12.9% and was prevalent in patients from the United States. These results suggested that R1141X and ABCC6del23-29 might have been derived regionally from founder alleles. Putative disease-causing mutations were identified in approximately 64% of the 244 chromosomes studied, and 85.2% of the 122 patients were found to have at least one disease-causing allele. Our results suggest that a fraction of the undetected mutant alleles could be either genomic rearrangements or mutations occurring in noncoding regions of the ABCC6 gene. The distribution pattern of ABCC6 mutations revealed a cluster of disease-causing variants within exons encoding a large C-terminal cytoplasmic loop and in the C-terminal nucleotide-binding domain (NBD2). We discuss the potential structural and functional significance of this mutation pattern within the context of the complex relationship between the PXE phenotype and the function of ABCC6.
Comments [show]
None has been submitted yet.
No. Sentence Comment
85 PXE Mutations The most-prevalent mutations detected in the ABCC6 gene were missense substitutions (21 [58.3%] mutations, Table 1 ABCC6 Mutations in a Cohort of Patients with PXE CHANGE IN STATUS a ORIGIN(S)b EXON(S)c REFERENCE(S)Amino Acid Nucleotide … 179-195del ht Belgium 2 Present study … 938-939insT ch, ht SA, UK 8 Present study N411K 1233TrG ht US 10 Present study A455P 1363GrC Nd Nd 11 Uitto et al. (2001) R518Q 1553GrA ch, ht Belgium 12 Present study, Uitto et al. (2001) F568S 1703TrC ch US 13 Present study … ABCC6del15 hm SA 15 Present study … 1944del22 ht Holland 16 Bergen et al. (2000) … 1995delG ht Germany 16 Present study L673P 2018TrC ch SA 16 Present study R765Q 2294GrA ht Germany 18 Present study Y768X 2304CrA ch, ht SA 18 Present study … 2322delC ht US 18 Present study … 2542delG Nd Nd 19 Uitto et al. (2001) … IVS21ϩ1GrT ch US, Germany i-21 Present study, Uitto et al. (2001) R1030X 3088CrT ht SA, UK 23 Present study R1114P 3341GrC hm UK 24 Present study S1121W 3362CrG ch Germany 24 Present study R1138W 3412CrT hm Nd 24 Ringpfeil et al. (2000) R1138P 3413GrC ch Germany 24 Present study R1138Q 3413GrA ch UK, US 24 Present study, Ringpfeil et al. (2000) R1141X 3421CrT All All 24 Present study and othersd R1164X 3490CrT ch Germany, UK 24 Ringpfeil et al. (2001) G1203D 3608GrA ch Germany 25 Present study … IVS26-1GrA ch Belgium i-26 Present study, Ringpfeil et al. (2000, 2001) Q1237X 3709CrT ch Belgium 26 Present study … 3775delT ht, hm SA, US, Holland 27 Present study, Bergen et al. (2000) V1298F 3892GrT ht US 28 Present study T1301I 3902CrT ch Belgium 28 Present study G1302R 3904GrA hm US 28 Present study A1303P 3907GrC ch Belgium 28 Present study R1314W 3940CrT hm US 28 Present study R1314Q 3941GrA ch Germany 28 Present study G1321S 3961GrA ht US 28 Present study R1339C 4015CrT All SA, US 28 Present study, Struk et al. (2000) Q1347H 4041GrC hm US 28 Present study D1361N 4081GrA ch Germany 29 Present study … 4104delC ch Belgium 29 Present study R1398X 4192CrT ch Belgium 29 Present study … ABCC6del23-29 ch US 23-29 Present study, Ringpfeil et al. (2001) … 4220insAGAA ht Holland 30 Bergen et al. (2000) I1424T 4271TrC ht US 30 Present study … ABCC6del ht Holland all Bergen et al. (2000) a Nd p not determined; hm p homozygote; ht p heterozygote; ch p compound heterozygote.
X
ABCC6 p.Tyr768* 11536079:85:757
status: NEW[hide] Evidence for a founder effect for pseudoxanthoma e... Hum Genet. 2002 Oct;111(4-5):331-8. Epub 2002 Sep 7. Le Saux O, Beck K, Sachsinger C, Treiber C, Goring HH, Curry K, Johnson EW, Bercovitch L, Marais AS, Terry SF, Viljoen DL, Boyd CD
Evidence for a founder effect for pseudoxanthoma elasticum in the Afrikaner population of South Africa.
Hum Genet. 2002 Oct;111(4-5):331-8. Epub 2002 Sep 7., [PMID:12384774]
Abstract [show]
Pseudoxanthoma elasticum (PXE) is a heritable elastic tissue disorder recently shown to be attributable to mutations in the ABCC6 ( MRP6) gene. Whereas PXE has been identified in all ethnic groups studied to date, the prevalence of this disease in various populations is uncertain, although often assumed to be similar. A notable exception however is the prevalence of PXE among South African Afrikaners. A previous report has suggested that a founder effect may explain the higher prevalence of PXE in Afrikaners, a European-derived population that first settled in South Africa in the 17th century. To investigate this hypothesis, we performed haplotype and mutational analysis of DNA from 24 South African families of Afrikaner, British and Indian descent. Among the 17 Afrikaner families studied, three common haplotypes and six different disease-causing variants were identified. Three of these mutant alleles were missense variants, two were nonsense mutations and one was a single base-pair insertion. The most common variant accounted for 53% of the PXE alleles, whereas other mutant alleles appeared at lower frequencies ranging from 3% to 12%. Haplotype analysis of the Afrikaner families showed that the three most frequent mutations were identical-by-descent, indicating a founder origin of PXE in this population.
Comments [show]
None has been submitted yet.
No. Sentence Comment
53 Two nonsense variants (Y768X and R1141X) and a single frameshift mutation (939insT) were also identified (Table 1).
X
ABCC6 p.Tyr768* 12384774:53:23
status: NEW59 The remaining R1141X mutations, characterized in Family 224 (Afrikaner) and Family 212 (British ancestry) were found in different haplotypes indicating that 333 Table 1 ABCC6 mutations identified in a cohort of South African PXE patients of Afrikaner and other ancestries (nt nucleotide, aa amino acid, ni not identified, UK United Kingdom, Black black South Africans) Family Allele 1 Allele 2 Ancestry nt change aa change Exon Haplotype nt change aa change Exon Haplotype 201 4015C→T R1339C 28 I 4015C→T R1339C 28 I Afrikaner 203 4015C→T R1339C 28 I 3413G→A R1138Q 24 III Afrikaner 205 3413G→A R1138Q 24 III 2304C→A Y768X 18 II Afrikaner 206 4015C→T R1339C 28 I 3421C→T R1141X 24 Other Afrikaner 208 4015C→T R1339C 28 I 4015C→T R1339C 28 I Afrikaner 209 4015C→T R1339C 28 I 2018T→C L673P 16 Other Afrikaner 211 4015C→T R1339C 28 I 3413G→A R1138Q 24 III Afrikaner 222 4015C→T R1339C 28 I 4015C→T R1339C 28 I Afrikaner 223 4015C→T R1339C 28 I 2304C→A Y768X 18 II Afrikaner 225 4015C→T R1339C 28 I 4015C→T R1339C 28 I Afrikaner 226 4015C→T R1339C 28 I 2304C→A Y768X 18 II Afrikaner 228 4015C→T R1339C 28 I 2304C→A Y768X 18 II Afrikaner 229 4015C→T R1339C 28 I 4015C→T R1339C 28 I Afrikaner 213 939insT Frameshift 8 Other ni ni ni Other Afrikaner 214 4015C→T R1339C 28 I ni ni ni Other Afrikaner 224 3421C→T R1141X 24 Other ni ni ni Other Afrikaner 204 ni ni Other ni ni ni Other Afrikaner 212 3421C→T R1141X 24 Other 939insT Frameshift 8 Other UK 215 3775delT Frameshift 27 Other 4104delC Frameshift 29 Other UK 217 ABCC6del15 Frameshift 15 Other ABCC6del15 Frameshift 15 Other Indian 207 3088C→T R1030X 23 Other ni ni ni Other UK 216 3421C→T R1141X 24 Other ni ni ni Other UK 219 1553G→A R518Q 12 Other ni ni ni Other UK 221 ni ni Other ni ni ni Other Black Table 2 Frequencies of mutant ABCC6 alleles found in a cohort of PXE patients of Afrikaner and other ancestries (?
X
ABCC6 p.Tyr768* 12384774:59:659
status: NEWX
ABCC6 p.Tyr768* 12384774:59:1076
status: NEWX
ABCC6 p.Tyr768* 12384774:59:1212
status: NEWX
ABCC6 p.Tyr768* 12384774:59:1280
status: NEW60 unidentified alleles, MDR mutation detection rate) Mutation Overall Afrikaner ancestries Others ancestries Allele Allele Allele Allele Allele Allele count frequency (%) count frequency (%) count frequency (%) R1339C 18 37.5 18 52.9 0 0 Y768X 4 8.3 4 11.8 0 0 R1141X 4 8.3 2 5.9 2 14.3 R1138Q 3 6.3 3 8.8 0 0 939insT 2 4.2 1 2.9 1 7.1 ABCC6del15 2 4.2 0 0.0 2 14.3 L673P 1 2.1 1 2.9 0 0.0 R1030X 1 2.1 0 0.0 1 7.1 R518Q 1 2.1 0 0.0 1 7.1 3775delT 1 2.1 0 0.0 1 7.1 4104delC 1 2.1 0 0.0 1 7.1 ?
X
ABCC6 p.Tyr768* 12384774:60:236
status: NEW66 Three major haplotypes, with some variation at single markers, encompassing the PXE locus (located between markers D16S405 and D16S764; Le Saux et al. 1999; Cai et al. 2000) were identified (Fig.1) and three disease alleles (R1339C, Y768X, R1138Q) were found to be strictly associated with these three haplotypes (referred to as types I, II and III; Fig.1).
X
ABCC6 p.Tyr768* 12384774:66:233
status: NEW81 The three disease alleles, R1339C, Y768X, and R1138X, associated with the type I, II and III haplotypes represent three ancestral founder alleles from which 74% of the Afrikaner alleles have descended.
X
ABCC6 p.Tyr768* 12384774:81:35
status: NEW95 No variants were found to co-segregate with the two other founder alleles R1138Q and Y768X.
X
ABCC6 p.Tyr768* 12384774:95:85
status: NEW104 Discussion The present study describes the identification of three PXE disease alleles, R1339C, Y768X and R1138Q, which are associated with three conserved haplotypes (types I, II and III) and which account for 74% of the PXE disease alleles among South African Afrikaners.
X
ABCC6 p.Tyr768* 12384774:104:96
status: NEW[hide] ABCC6/MRP6 mutations: further insight into the mol... Eur J Hum Genet. 2003 Mar;11(3):215-24. Hu X, Plomp A, Wijnholds J, Ten Brink J, van Soest S, van den Born LI, Leys A, Peek R, de Jong PT, Bergen AA
ABCC6/MRP6 mutations: further insight into the molecular pathology of pseudoxanthoma elasticum.
Eur J Hum Genet. 2003 Mar;11(3):215-24., [PMID:12673275]
Abstract [show]
Pseudoxanthoma elasticum (PXE) is a hereditary disease characterized by progressive dystrophic mineralization of the elastic fibres. PXE patients frequently present with skin lesions and visual acuity loss. Recently, we and others showed that PXE is caused by mutations in the ABCC6/MRP6 gene. However, the molecular pathology of PXE is complicated by yet unknown factors causing the variable clinical expression of the disease. In addition, the presence of ABCC6/MRP6 pseudogenes and multiple ABCC6/MRP6-associated deletions complicate interpretation of molecular genetic studies. In this study, we present the mutation spectrum of ABCC6/MRP6 in 59 PXE patients from the Netherlands. We detected 17 different mutations in 65 alleles. The majority of mutations occurred in the NBF1 (nucleotide binding fold) domain, in the eighth cytoplasmatic loop between the 15th and 16th transmembrane regions, and in NBF2 of the predicted ABCC6/MRP6 protein. The R1141X mutation was by far the most common mutation identified in 19 (32.2%) patients. The second most frequent mutation, an intragenic deletion from exon 23 to exon 29 in ABCC6/MRP6, was detected in 11 (18.6%) of the patients. Our data include 11 novel ABCC6/MRP6 mutations, as well as additional segregation data relevant to the molecular pathology of PXE in a limited number of patients and families. The consequences of our data for the molecular pathology of PXE are discussed.
Comments [show]
None has been submitted yet.
No. Sentence Comment
38 Table 2 Summary of ABCC6/MRP6 mutations associated with PXE known today: our data combined with those of the literature Mutation Protein alteration Nucleotide substitution Location Reference Nonsense Q378X 1132C > T Exon 9 19,20 R518X 1552C > T Exon 2 41 Q749X 2247C > T Exon 17 This study Y768X 2304C > A Exon 18 22 R1030X 3088C > T Exon 23 22 R1141X 3421C > T Exon 24 12,20,22,38,39, this study R1164X 3490C > T Exon 24 12,41 Q1237X 3709C > T Exon 26 22 R1398X 4192C >T Exon 29 22 T364R Missense N411K 1091C > G Exon 9 20 A455P 1233T > G Exon 10 22 R518Q 1363G > C Exon 11 38 F568S 1553G > A Exon 12 22,38 L673P 1703T > C Exon 13 22 R765Q 2018T > C Exon 16 22 R1114P 2294G > A Exon 18 22, this study R1114H 3341G > C Exon 24 22 S1121W 3341G > A Exon 24 This study T1130M 3362C > G Exon 24 22 R1138W 3390C > T Exon 24 This study R1138Q 3412C > T Exon 24 12 R1138P 3413G > A Exon 24 12,22 G1203D 3413G > C Exon 24 22 R1221C 3608G > A Exon 25 22 V1298F 3663C > T Exon 26 This study T1301I 3892G > T Exon 28 22 G1302R 3902C > T Exon 28 22 A1303P 3904G > A Exon 28 22, this study R1314W 3907G > C Exon 28 22, this study R1314Q 3940C > T Exon 28 22 G1321S 3941G > A Exon 28 22 R1339C 3961G > A Exon 28 22 Q1347H 4015C > T Exon 28 22,39 G1354R 4041G > C Exon 28 22 D1361N 4060G > C Exon 29 20,38 K1394N 4081G > A Exon 29 22 I1424T 4182G > T Exon 29 This study R1459C 4271T > C Exon 30 22 4377C > T Exon 30 This study Frameshift IVS17-12delT T Intron 17 This study IVS21+1G>T Intron 21 22,38 IVS26-1G>A Intron 26 12,21,22 179del 9 Exon 2 20 179-195del Exon 2 22 960del C Exon 8 41 1944del22 Exon 16 This study 1995delG Exon 16 22 2322delC Exon 18 22 2542delG Exon 19 41 3775delT Exon 27 This study 4104delC Exon 29 22 4182delG Exon 29 This study 938-939insT Exon 8 22 4220insAGAA Exon 30 This study Large deletion Exons 23-29 21, This study Exon 15 22 ABCC1, ABCC6 41, this study Mutation types The mutation types found in this study are summarized in Table 1.
X
ABCC6 p.Tyr768* 12673275:38:290
status: NEW[hide] Pseudoxanthoma elasticum: a clinical, histopatholo... Surv Ophthalmol. 2003 Jul-Aug;48(4):424-38. Hu X, Plomp AS, van Soest S, Wijnholds J, de Jong PT, Bergen AA
Pseudoxanthoma elasticum: a clinical, histopathological, and molecular update.
Surv Ophthalmol. 2003 Jul-Aug;48(4):424-38., [PMID:12850230]
Abstract [show]
Pseudoxanthoma elasticum is an autosomally inherited disorder that is associated with the accumulation of mineralized and fragmented elastic fibers in the skin, Bruch's membrane in the retina, and vessel walls. The ophthalmic and dermatologic expression of pseudoxanthoma elasticum and its vascular complications are heterogeneous, with considerable variation in phenotype, progression, and mode of inheritance. Using linkage analysis and mutation detection techniques, mutations in the ABCC6 gene were recently implicated in the etiology of pseudoxanthoma elasticum. ABCC6 encodes the sixth member of the ATP-binding cassette transporter and multidrug resistance protein family (MRP6). In humans, this transmembrane protein is highly expressed in the liver and kidney. Lower expression was found in tissues affected by pseudoxanthoma elasticum, including skin, retina, and vessel walls. So far, the substrates transported by the ABCC6 protein and its physiological role in the etiology of pseudoxanthoma elasticum are not known. A functional transport study of rat MRP6 suggests that small peptides such as the endothelin receptor antagonist BQ123 are transported by MRP6. Similar molecules transported by ABCC6 in humans may be essential for extracellular matrix deposition or turnover of connective tissue at specific sites in the body. One of these sites is Bruch's membrane. This review is an update on etiology of pseudoxanthoma elasticum, including its clinical and genetic features, pathogenesis, and biomolecular basis.
Comments [show]
None has been submitted yet.
No. Sentence Comment
193 TABLE 3 Summary of ABCC6 Mutations in PXE Patients Mutation Protein Alteration Nucleotide Substitution Location Reference Nonsense Q378X 1132C Ͼ T Exon 9 16,107 R518X 1552C Ͼ T Exon 12 88 Y768X 2304C Ͼ A Exon 18 67 R1030X 3088C Ͼ T Exon 23 67 R1141X 3421C Ͼ T Exon 24 12,45,67,107,111,112,133 R1164X 3490C Ͼ T Exon 24 88,112 Q1237X 3709C Ͼ T Exon 26 67 R1398X 4192C Ͼ T Exon 29 67 Missense T364R 1091C Ͼ G Exon 9 107 N411K 1233T Ͼ G Exon 10 67 A455P 1363G Ͼ C Exon 11 142 R518Q 1553G Ͼ A Exon 12 67,142 F568S 1703T Ͼ C Exon 13 67 L673P 2018T Ͼ C Exon 16 67 R765Q 2294G Ͼ A Exon 18 67 R1114P 3341G Ͼ C Exon 24 67 S1121W 3362C Ͼ G Exon 24 67 R1138W 3412C Ͼ T Exon 24 111 R1138Q 3413G Ͼ A Exon 24 67,111 R1138P 3413G Ͼ C Exon 24 67 G1203D 3608G Ͼ A Exon 25 67 V1298F 3892G Ͼ T Exon 28 67 T13011 3902C Ͼ T Exon 28 67 G1302R 3904G Ͼ A Exon 28 67 A1303P 3907G Ͼ C Exon 28 67 R1314W 3940C Ͼ T Exon 28 67 R1314Q 3941G Ͼ A Exon 28 67 G1321S 3961G Ͼ A Exon 28 67 R1339C 4015C Ͼ T Exon 28 67,133 Q1347H 4041G Ͼ C Exon 28 67 G1354R 4060G Ͼ C Exon 29 107,142 D1361N 4081G Ͼ A Exon 29 67 11424T 4271T Ͼ C Exon 30 67 Frameshift Splicing IVS21 ϩ 1G ϾT Intron 21 67,142 IVS26-1G ϾA Intron 26 67,111,112 Deletion 179del9 Exon 2 107 179-195del Exon 2 67 960delC Exon 8 88 1944del22 Exon 16 12 1995delG Exon 16 67 2322delC Exon 18 67 2542delG Exon 19 67 3775delT Exon 27 12,67 4101delC Exon 29 67 Insertion 938-939insT Exon 8 67 4220insAGAA Exon 30 12 Intragenic deletion Exon 23-29 67,112 Exon 15 67 Intergenic deletion ABCC6 12,88 LOCAL RETINAL TRANSPORT FUNCTION OF ABCC6 ABCC6 Expression in the Retina Bergen et al detected ABCC6 expression in various tissues in man.12 Low expression levels of ABCC6 were observed in the retina as well as other tissues usually affected by PXE, including skin and vessel wall.
X
ABCC6 p.Tyr768* 12850230:193:200
status: NEW[hide] Pseudoxanthoma elasticum: a clinical, pathophysiol... J Med Genet. 2005 Dec;42(12):881-92. Epub 2005 May 13. Chassaing N, Martin L, Calvas P, Le Bert M, Hovnanian A
Pseudoxanthoma elasticum: a clinical, pathophysiological and genetic update including 11 novel ABCC6 mutations.
J Med Genet. 2005 Dec;42(12):881-92. Epub 2005 May 13., [PMID:15894595]
Abstract [show]
Pseudoxanthoma elasticum (PXE) is an inherited systemic disease of connective tissue primarily affecting the skin, retina, and cardiovascular system. It is characterised pathologically by elastic fibre mineralisation and fragmentation (so called "elastorrhexia"), and clinically by high heterogeneity in age of onset and the extent and severity of organ system involvement. PXE was recently associated with mutations in the ABCC6 (ATP binding cassette subtype C number 6) gene. At least one ABCC6 mutation is found in about 80% of patients. These mutations are identifiable in most of the 31 ABCC6 exons and consist of missense, nonsense, frameshift mutations, or large deletions. No correlation between the nature or location of the mutations and phenotype severity has yet been established. Recent findings support exclusive recessive inheritance. The proposed prevalence of PXE is 1/25,000, but this is probably an underestimate. ABCC6 encodes the protein ABCC6 (also known as MRP6), a member of the large ATP dependent transmembrane transporter family that is expressed predominantly in the liver and kidneys, and only to a lesser extent in tissues affected by PXE. The physiological substrates of ABCC6 remain to be determined, but the current hypothesis is that PXE should be considered to be a metabolic disease with undetermined circulating molecules interacting with the synthesis, turnover, or maintenance of elastic fibres.
Comments [show]
None has been submitted yet.
No. Sentence Comment
378 Interestingly, among the 49 different missense mutations in ABCC6 (42 previously published and seven new ones in the present study), the majority (43) replace critical amino acids in intracellular domains (seven and 19 mutations are located in I1424T R1459C 4220insAGAA 4318delA G1354R D1361N K1394N E1400K R1298X 410delC 418delG 3775delT R1275X R1221C D1238H W1223X Q1237X IVS26-1G→A R1114C R1114H R1114P S1121W M1127T T1130M R1138P R1138Q R1138W R1141X R1164X R765Q A766D Y768X A781V 2322delC IVS19-2delAG T364R R391G Q378X Q363_R373del 938_939insT 960delC IVS8+2delTG G199X Y227X 179_195del 179_187del G226R V74del Q749X IVS17-12delTT IVS14-5T→G IVS13-29T→A R600G V1298F G1299S T1301I G1302R A1303P S1307P R1314Q R1314W G1321S L1335P R1339C P1346S Q1347H R1030X F1048del R807Q V810M A820P 254delG L673P 1944_1966del 1995delG R518Q R518X K502M A455P G992R IVS21+1G→T G1203DF568SN411K C440G IVS25-3C→A 3544dupC Ex23_29del 30 Ex15del ABCC6del 252015105 Figure 10 Position of the mutations in the ABCC6 gene.
X
ABCC6 p.Tyr768* 15894595:378:481
status: NEW379 Table 2 ABCC6 mutations Nucleotide variation Protein alteration Location (gene ) Location (protein) Reference Missense 676 GRA G226R Exon 7 CL 3 This study 1091 CRG T364R Exon 9 TS 7 63, 78 1171 ARG R391G Exon 9 CL 4 88 1233 TRG N411K Exon 10 CL 4 63, 90 1318 TRG C440G Exon 10 TS 8 63 1363 GRC A455P Exon 11 TS 9 86 1505 ART K502M Exon 12 CL 5 This study 1553 GRA R518Q Exon 12 CL 5 63, 86, 88, 90 1703 TRC F568S Exon 13 ECL 5 90 1798 CRT R600G Exon 14 CL 6 63 2018 TRC L673P Exon 16 NBF 1 90 2294 GRA R765Q Exon 18 NBF 1 87, 90 2297 CRA A766D Exon 18 NBF 1 88 2342 CRT A781V Exon 18 NBF 1 This study 2420 GRA R807Q Exon 19 NBF 1 This study 2428 GRA V810M Exon 19 NBF1 63 2458 GRC A820P Exon 19 NBF1 63 2965 GRC G992R Exon 22 ECL 6 This study 3340 CRT R1114C Exon 24 CL 8 63 3341 GRA R1114H Exon 24 CL 8 87 3341 GRC R1114P Exon 24 CL 8 90 3362 CRG S1121W Exon 24 CL 8 90 3380 CRT M1127T Exon 24 CL 8 63 3389 CRT T1130M Exon 24 CL 8 63, 87, 88 3412 CRT R1138W Exon 24 CL 8 17 3413 GRC R1138P Exon 24 CL 8 90 3413 GRA R1138Q Exon 24 CL 8 17, 63, 88, 90 3608 GRA G1203D Exon 25 TS17 90 3663 CRT R1221C Exon 26 COOH 87 3712 GRC D1238H Exon 26 COOH 88 3892 GRT V1298F Exon 28 NBF 2 90 3895 GRA G1299S Exon 28 NBF 2 This study 3902 CRT T1301I Exon 28 NBF 2 90 3904 GRA G1302R Exon 28 NBF 2 87, 90 3907 GRC A1303P Exon 28 NBF 2 87, 90 3919 TRC S1307P Exon 28 NBF 2 This study 3940 CRT R1314W Exon 28 NBF 2 90 3941 GRA R1314Q Exon 28 NBF 2 90 3961 GRA G1321S Exon 28 NBF 2 90 4004 TRC L1335P Exon 28 NBF 2 88 4015 CRT R1339C Exon 28 NBF 2 18, 63, 90 4036 CRT P1346S Exon 28 NBF 2 63 4041 GRC Q1347H Exon 28 NBF 2 90 4060 GRC G1354R Exon 29 NBF 2 78, 86 4081 GRA D1361N Exon 29 NBF 2 90 4182 GRT K1394N Exon 29 NBF 2 87 4198 GRA E1400K Exon 29 NBF 2 63, 88 4271 TRC I1424T Exon 30 NBF 2 90 4377 CRT R1459C Exon 30 NBF 2 87 Nonsense 595 CRT G199X Exon 5 89 681 CRG Y227X Exon 7 84 1132 CRT Q378X Exon 9 63, 78, 83 1552 CRT R518X Exon 12 63, 84, 88 2245 CRT Q749X Exon 17 87 2304 CRA Y768X Exon 18 90 3088 CRT R1030X Exon 23 63, 90 3421 CRT R1141X Exon 24 15, 17, 18, 63, 78, 85, 87, 88, 90 3490 CRT R1164X Exon 24 84, 85, 88 3668 GRA W1223X Exon 26 88 3709 CRT Q1237X Exon 26 90 3823 CRT R1275X Exon 27 63 4192 CRT R1398X Exon 29 90 Splicing alteration IVS8+2delTG Intron 8 This study IVS13-29 TRA Intron 13 This study IVS14-5 TRG Intron 14 This study IVS17-12delTT Intron 17 87 IVS18-2delAG Intron 17 63 IVS21+1 GRT Intron 21 86, 90 IVS25-3 CRA Intron 25 88 IVS26-1 GRA Intron 26 17, 63, 90 Insertion 938_939insT Frameshift Exon 8 90 3544dupC Frameshift Exon 25 63 4220insAGAA Frameshift Exon 30 15, 87 Small deletion 179_187del Frameshift Exon 2 78 179_195del Frameshift Exon 2 90 Pseudoxanthoma elasticum www.jmedgenet.com NBF1 and NBF2, respectively), four are located in transmembrane domains, and only two mutations have been identified in extracellular domains.
X
ABCC6 p.Tyr768* 15894595:379:1974
status: NEW[hide] Serum factors from pseudoxanthoma elasticum patien... J Invest Dermatol. 2006 Jul;126(7):1497-505. Epub 2006 Mar 16. Le Saux O, Bunda S, VanWart CM, Douet V, Got L, Martin L, Hinek A
Serum factors from pseudoxanthoma elasticum patients alter elastic fiber formation in vitro.
J Invest Dermatol. 2006 Jul;126(7):1497-505. Epub 2006 Mar 16., [PMID:16543900]
Abstract [show]
Pseudoxanthoma elasticum (PXE) is a heritable disorder mainly characterized by calcified elastic fibers in cutaneous, ocular, and vascular tissues. PXE is caused by mutations in ABCC6, a gene encoding an ABC transporter predominantly expressed in liver and kidneys. The functional relationship between ABCC6 and elastic fiber calcification is unknown. We speculated that ABCC6 deficiency in PXE patients induces a persistent imbalance in circulating metabolite(s), which may impair the synthetic abilities of normal elastoblasts or specifically alter elastic fiber assembly. Therefore, we compared the deposition of elastic fiber proteins in cultures of fibroblasts derived from PXE and unaffected individuals. PXE fibroblasts cultured with normal human serum expressed and deposited increased amounts of proteins, but structurally normal elastic fibers. Interestingly, normal and PXE fibroblasts as well as normal smooth muscle cells deposited abnormal aggregates of elastic fibers when maintained in the presence of serum from PXE patients. The expression of tropoelastin and other elastic fiber-associated genes was not significantly modulated by the presence of PXE serum. These results indicated that certain metabolites present in PXE sera interfered with the normal assembly of elastic fibers in vitro and suggested that PXE is a primary metabolic disorder with secondary connective tissue manifestations.
Comments [show]
None has been submitted yet.
No. Sentence Comment
180 69 PXE 6 (M) PXE Y768X/Y768X 18 1 Control #3: pool of 10 samples, age 465, control #4: pool of 15 samples age o30. Av.: average, SMC: smooth muscle cell.
X
ABCC6 p.Tyr768* 16543900:180:17
status: NEWX
ABCC6 p.Tyr768* 16543900:180:23
status: NEW[hide] Spectrum of genetic variation at the ABCC6 locus i... J Dermatol Sci. 2009 Jun;54(3):198-204. Epub 2009 Mar 31. Ramsay M, Greenberg T, Lombard Z, Labrum R, Lubbe S, Aron S, Marais AS, Terry S, Bercovitch L, Viljoen D
Spectrum of genetic variation at the ABCC6 locus in South Africans: Pseudoxanthoma elasticum patients and healthy individuals.
J Dermatol Sci. 2009 Jun;54(3):198-204. Epub 2009 Mar 31., [PMID:19339160]
Abstract [show]
BACKGROUND: Pseudoxanthoma elasticum (PXE) is an autosomal recessive metabolic disorder with ectopic mineralization in the skin, eyes and cardiovascular system. PXE is caused by mutations in ABCC6. OBJECTIVE: To examine 54 unrelated South African PXE patients for ABCC6 PXE causing mutations. METHODS: Patients were screened for mutations in ABCC6 using two strategies. The first involved a comprehensive screening of all the ABCC6 exons and flanking regions by dHPLC or sequencing whereas the second involved screening patients only for the common PXE mutations. The ABCC6 gene was screened in ten white and ten black healthy unrelated South Africans in order to examine the level of common non-PXE associated variation. RESULTS: The Afrikaner founder mutation, R1339C, was present in 0.41 of white ABCC6 PXE alleles, confirming the founder effect and its presence in both Afrikaans- (34/63 PXE alleles) and English-speakers (4/28). Eleven mutations were detected in the white patients (of European origin), including two nonsense mutations, 6 missense mutations, two frameshift mutations and a large deletion mutation. The five "Coloured" patients (of mixed Khoisan, Malay, European and African origin) included three compound heterozygotes with R1339C as one of the mutations. The three black patients (sub-Saharan African origin) were all apparent homozygotes for the R1314W mutation. Blacks showed a trend towards a higher degree of neurtral variation (18 variants) when compared to whites (12 variants). CONCLUSION: Delineation of the ABCC6 mutation profile in South African PXE patients will be used as a guide for molecular genetic testing in a clinical setting and for genetic counselling.
Comments [show]
None has been submitted yet.
No. Sentence Comment
80 Exons 12, 18 and 24 were PCR amplified and sequenced to detect the R518Q, Y768X, R1141X and R1138Q mutations and the common del23-29 mutation was detected as previously described [16].
X
ABCC6 p.Tyr768* 19339160:80:74
status: NEW98 The next three more common mutations are R1141X (0.09), Y768X (0.08) and R1138Q (0.06).
X
ABCC6 p.Tyr768* 19339160:98:56
status: NEW121 of alleles with mutation Frequency R1339C c.4015C>T 28 NBF2 18 0.375 21 0.447 0.411 (39) [30-32] R1138Q c.3413G>A 24 CL8 5 0.104 1 0.021 0.063 (6) [3,7,32] Y768X c.2304C>A 18 NBF1 5 0.104 3 0.064 0.084 (8) [31] R1141X c.3421C>T 24 CL8 4 0.083 5 0.106 0.095 (9) [3,6,13] R518Q c.1553G>A 12 CL5 2 0.042 1 0.021 0.032 (3) [31-33] Deletion ABCC6del23-29 23-29 - 1 0.021 2 0.043 0.032 (3) [6,16,31,32] L1335P c.4004T>C 28 NBF2 2 0.042 - - Other = 0.063 (6) [3] G1302R c.3904G>A 28 NBF2 1 0.021 - - [31] L726P c.2177T>C 17 NBF1 1 0.021 - - This Study Frameshift c.3775delT 27 CL9 1 0.021 - - [6] Frameshift c.4104delC 29 NBF2 1 0.021 - - [31] Unknown - - - 7 0.146 14 0.298 0.221 (21) - Total 48 47 Mutation detection rate 0.855 0.702 0.717 a ''Coloured``, black and Indian patients are excluded from the table because of the small sample size.
X
ABCC6 p.Tyr768* 19339160:121:156
status: NEW145 Mutation Afrikaans-speakersa English-speakersa No. Frequency No. Frequency R1339C 34 0.54 4 0.14 R1138Q 5 0.08 1 0.04 Y768X 5 0.08 3 0.11 R1141X 5 0.08 4 0.14 R518Q 1 0.02 2 0.07 del23-29 0 - 3 0.11 Other 0 - 4 0.14 Unknown 13 0.21 7 0.25 Total no. alleles 63 28 a Only 2 families were bilingual Afrikaans/English speaking and not included in this table.
X
ABCC6 p.Tyr768* 19339160:145:118
status: NEW160 Three further mutations have frequencies above 0.06, namely R1138Q, Y768X and R1141X.
X
ABCC6 p.Tyr768* 19339160:160:68
status: NEW195 It detects 79.2% of the PXE mutations in white South African patients including: R1339C, R1138Q, Y768X, R1141X, R518Q, del23-29, L1335P and G1302R (calculated according to detection Strategy 1, Table 1).
X
ABCC6 p.Tyr768* 19339160:195:97
status: NEW[hide] [Pseudoxanthoma elasticum]. Ophthalmologe. 2006 Jun;103(6):537-51; quiz 552-3. Ladewig MS, Gotting C, Szliska C, Issa PC, Helb HM, Bedenicki I, Scholl HP, Holz FG
[Pseudoxanthoma elasticum].
Ophthalmologe. 2006 Jun;103(6):537-51; quiz 552-3., [PMID:16763870]
Abstract [show]
Pseudoxanthoma elasticum (PXE) is an inherited disorder that is associated with accumulation of mineralized and fragmented elastic fibers in the skin, vessel walls, and Bruch's membrane. Clinically, patients exhibit characteristic lesions of the skin (soft, ivory-colored papules in a reticular pattern that predominantly affect the neck), the posterior segment of the eye (peau d'orange, angioid streaks, choroidal neovascularizations), and the cardiovascular system (peripheral arterial occlusive disease, coronary occlusion, gastrointestinal bleeding). There is no causal therapy. Recent studies suggest that PXE is inherited almost exclusively as an autosomal recessive trait. Its prevalence has been estimated to be 1:25,000-100,000. The ABCC6 gene on chromosome 16p13.1 is associated with the disease. Mutations within the ABCC6 gene cause reduced or absent transmembraneous transport that leads to accumulation of substrate and calcification of elastic fibers. Although based on clinical features the diagnosis appears readily possible, variability in phenotypic expressions and the low prevalence may be responsible that the disease is underdiagnosed. This review covers current knowledge of PXE and presents therapeutic approaches.
Comments [show]
None has been submitted yet.
No. Sentence Comment
272 Internetadressen PXE-Selbsthilfegruppe Deutschland : http://www.pxe-groenblad.de PXE International: http://www.pxe.org Tabelle 5 PXE verursachende Mutationen imabcc6-Gen Klassifikation Lokalisation Gen Protein Missense Exon 9 Exon 9 Exon 10 Exon 10 Exon 11 Exon 12 Exon 13 Exon 14 Exon 16 Exon 18 Exon 18 Exon 18 Exon 18 Exon 19 Exon 19 Exon 19 Exon 22 Exon 24 Exon 24 Exon 24 Exon 24 Exon 24 Exon 24 Exon 24 Exon 24 Exon 24 Exon 25 Exon 26 Exon 26 Exon 26 Exon 28 Exon 28 Exon 28 Exon 28 Exon 28 Exon 28 Exon 28 Exon 28 Exon 28 Exon 28 Exon 28 Exon 28 Exon 28 Exon 29 Exon 29 Exon 29 Exon 29 Exon 29 Exon 30 Exon 30 Exon 30 c.1091CaG c.1171AaG c.1233TaG c.1318TaG c.1363GaC c.1553GaA c.1703TaC c.1798CaT c.2018TaC c.2252TaA c.2278CaT c.2294GaA c.2297CaA c.2428GaA c.2458GaC c.2552TaC c.2855TaG c.3340CaT c.3341GaA c.3341GaC c.3362CaG c.3380CaT c.3389CaT c.3412CaT c.3413GaA c.3413GaC c.3608GaA c.3661CaT c.3712GaC c.3715TaC c.3892GaT c.3902CaT c.3904GaA c.3907GaC c.3932GaA c.3940CaT c.3941GaA c.3961GaA c.3976GaA c.4004TaC c.4015CaT c.4036CaT c.4041GaC c.4060GaC c.4069CaT c.4081GaA c.4182GaT c.4198GaA c.4209CaA c.4271TaC c.4377CaT p.T364R p.R391G p.N411K p.C440G p.A455P p.R518Q p.F568S p.R600G p.L673P p.M751K p.R760W p.R765Q p.A766D p.V810M p.A820P p.L851P p.F952C p.R1114C p.R1114H p.R1114P p.S1121W p.M1127T p.T1130M p.R1138W p.R1138Q p.R1138P p.G1203D p.R1221C p.D1238H p.Y1239H p.V1298F p.T1301I p.G1302R p.A1303P p.G1311E p.R1314W p.R1314Q p.G1321S p.D1326N p.L1335P p.R1339C p.P1346S p.Q1347H p.G1354R p.R1357W p.D1361N p.K1394N p.E1400K p.S1403R p.I1424T p.R1459C Klassifikation Lokalisation Gen Protein Nonsense Exon 9 Exon 12 Exon 17 Exon 18 Exon 23 Exon 24 Exon 24 Exon 26 Exon 26 Exon 27 Exon 29 c.1132CaT c.1552CaT c.2247CaT c.2304CaA c.3088CaT c.3421CaT c.3490CaT c.3668GaA c.3709CaT c.3823CaT c.4192CaT p.Q378X p.R518X p.Q749X p.Y768X p.R1030X p.R1141X p.R1164X p.W1223X p.Q1237X p.R1275X p.R1398X Spleißstellen Intron 21 Intron 25 Intron 26 c.2787+1GaT c.3634-3CaA c.3736-1GaA Insertion Exon 8 Exon 25 Exon 30 c.938-939insT c.3544dupC c.4220insAGAA Deletion Exon 2 Exon 2 Exon 3 Exon 8 Exon 9 Exon 16 Exon 16 Exon 18 Exon 19 Exon 22 Exon 27 Exon 29 Exon 29 Exon 30 Exon 31 c.179del9 c.179-195del c.220-222del c.960delC c.1088-1120del c.1944del22 c.1995delG c.2322delC c.2542delG c.2835-2850del16 c.3775delT c.4101delC c.4182delG c.4318delA c.4434delA Intragenische Deletion Exon 15 Exon 18 Exon 23-29 delEx15 delEx18 delEx23-29 Intergenische Deletion ABCC6 delABCC6 Fazit für die Praxis Eine spezifische Behandlung der Grunderkrankung ist nicht bekannt.
X
ABCC6 p.Tyr768* 16763870:272:1850
status: NEW