ABCC1 p.Ser685His
Predicted by SNAP2: | A: D (85%), C: D (91%), D: D (95%), E: D (95%), F: D (95%), G: D (91%), H: D (95%), I: D (95%), K: D (95%), L: D (95%), M: D (95%), N: D (91%), P: D (95%), Q: D (95%), R: D (95%), T: D (80%), V: D (95%), W: D (95%), Y: D (95%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, G: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, R: D, T: N, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] The hydroxyl group of S685 in Walker A motif and t... Biochim Biophys Acta. 2008 Feb;1778(2):454-65. Epub 2007 Nov 29. Yang R, Scavetta R, Chang XB
The hydroxyl group of S685 in Walker A motif and the carboxyl group of D792 in Walker B motif of NBD1 play a crucial role for multidrug resistance protein folding and function.
Biochim Biophys Acta. 2008 Feb;1778(2):454-65. Epub 2007 Nov 29., [PMID:18088596]
Abstract [show]
Structural analysis of MRP1-NBD1 revealed that the Walker A S685 forms hydrogen-bond with the Walker B D792 and interacts with magnesium and the beta-phosphate of the bound ATP. We have found that substitution of the D792 with leucine resulted in misfolding of the protein. In this report we tested whether substitution of the S685 with residues that prevent formation of this hydrogen-bond would also cause misfolding. Indeed, substitution of the S685 with residues potentially preventing formation of this hydrogen-bond resulted in misfolding of the protein. In addition, some substitutions that might form hydrogen-bond with D792 also yielded immature protein. All these mutants are temperature-sensitive variants. However, these complex-glycosylated mature mutants prepared from the cells grown at 27 degrees C still significantly affect ATP binding and ATP-dependent solute transport. In contrast, substitution of the S685 with threonine yielded complex-glycosylated mature protein that is more active than the wild-type MRP1, indicating that the interaction between the hydroxyl group of 685 residue and the carboxyl group of D792 plays a crucial role for the protein folding and the interactions of the hydroxyl group at 685 with magnesium and the beta-phosphate of the bound ATP play an important role for ATP-binding and ATP-dependent solute transport.
Comments [show]
None has been submitted yet.
No. Sentence Comment
31 However, even if they form mature protein at 27 °C, these mature MRP1 proteins bearing S685A, S685C, S685D, S685H or S685N mutations still do not have full ability to transport LTC4, indicating that the hydroxyl group at 685 (in serine or threonine) plays an important role for interacting with Mg·ATP [30].
X
ABCC1 p.Ser685His 18088596:31:113
status: NEW45 The forward and reverse primers used to introduce these mutations are: S685T/forward, 5'-GTG GGC TGC GGA AAG ACG TCC CTG CTC TCA GCC-3'; S685T/reverse, 5'-GGC TGA GAG CAG GGA CGT CTT TCC GCA GCC CAC-3'; S685A/forward, 5'-GTG GGC TGC GGA AAG GCG TCC CTG CTC TCA GCC-3'; S685A/reverse, 5'-GGC TGA GAG CAG GGA CGC CTT TCC GCA GCC CAC-3'; S685C/forward, 5'-GTG GGC TGC GGA AAG TGC TCC CTG CTC TCA GCC-3'; S685C/reverse, 5'- GGC TGA GAG CAG GGA GCA CTT TCC GCA GCC CAC-3'; S685H/ forward, 5'-GTG GGC TGC GGA AAG CAC TCC CTG CTC TCA GCC-3'; S685H/reverse, 5'-GGC TGA GAG CAG GGA GTG CTT TCC GCA GCC CAC-3'; S685N/forward, 5'- GTG GGC TGC GGA AAG AAC TCC CTG CTC TCA GCC-3'; S685N/reverse, 5'-GGC TGA GAG CAG GGA GTT CTT TCC GCA GCC CAC-3'; S685D/forward, 5'-GTG GGC TGC GGA AAG GAT TCC CTG CTC TCA GCC-3'; S685D/reverse, 5'-GGC TGA GAG CAG GGA ATC CTT TCC GCA GCC CAC-3'.
X
ABCC1 p.Ser685His 18088596:45:468
status: NEWX
ABCC1 p.Ser685His 18088596:45:535
status: NEW112 We, then, mutated this serine residue to other amino acids, such as S685C, S685N and S685H (Fig. 2A), that could potentially form hydrogen-bond with the D792 residue in Walker B motif.
X
ABCC1 p.Ser685His 18088596:112:85
status: NEW114 S685H is an interesting mutant that produces similar amount of immature MRP1 protein and 37 kDa degradation product as S685A, but the amount of complex-glycosylated mature S685H is significantly higher than that of S685A, S685C or S685N (Fig. 2B), implying that the histidine residue at that position might form a weak hydrogen bond or salt bridge with the D792 in Walker B motif.
X
ABCC1 p.Ser685His 18088596:114:0
status: NEWX
ABCC1 p.Ser685His 18088596:114:172
status: NEW116 S685A, S685C, S685H and S685N are temperature sensitive mutants Serine residue at 685 may also interact with the metal cofactor [30] and the β-phosphate of the bound ATP [17] and, thus, participates Mg·ATP binding.
X
ABCC1 p.Ser685His 18088596:116:14
status: NEW119 As shown in Fig. 3A, all these mutants, including S685H, S685N, S685C and S685A, mainly form complex-glycosylated mature MRP1 proteins at 27 °C.
X
ABCC1 p.Ser685His 18088596:119:50
status: NEW122 This hypothesis is confirmed by the fact that the two degradation products, ~75 kDa and ~35 kDa, were clearly detected by mAb against NBD2 in the mutants of S685H, S685N, S685C or S685A grown at 27 °C, but not in wild-type or S685T (Fig. 3A).
X
ABCC1 p.Ser685His 18088596:122:157
status: NEW123 If these mutants, including S685H, S685N, S685C and S685A, form complex-glycosylated mature MRP1 proteins at 27 °C, they should be distinguished from the core-glycosylated immature protein by digestion with endoglycosidase H [36].
X
ABCC1 p.Ser685His 18088596:123:28
status: NEW124 The results in Fig. 3B clearly indicate that the 165 kDa immature MRP1s, including S685H, S685N, S685C and S685A, are sensitive to endoglycosidase H digestion whereas the 190-kDa mature MRP1 proteins, regardless whether they are wild-type or mutants, are not (Fig. 3B).
X
ABCC1 p.Ser685His 18088596:124:83
status: NEW144 S685A, S685C, S685H and S685N are temperature-sensitive mutants.
X
ABCC1 p.Ser685His 18088596:144:14
status: NEW172 Interestingly, substitution of the Walker A serine residue with a cysteine (S685C), a histidine (S685H), an aspartic acid (S685D) or an asparagine (S685N) that may potentially interact with metal co-factor and the β-phosphate of the bound ATP exerts approximately two fold higher transport activity than that of S685A (Fig. 5B).
X
ABCC1 p.Ser685His 18088596:172:97
status: NEW240 The results derived from S685H, S685N and D792S also support the above conclusion.
X
ABCC1 p.Ser685His 18088596:240:25
status: NEW241 For example, although majority of the S685H [The five-member imidazole ring in histidine might be partial positively charged under physiological pH and computer simulation (Fig. 1) of S685H-mutated NBD1 indicates that the distance between the nitrogen atom of H685 and the carboxyl group of D792 is ~1.93 Å] are core-glycosylated immature protein at 37 °C (Figs. 2B and 3A), the ratio of mature S685H versus immature protein at 37 °C is much higher than that of S685A (Figs. 2B and 3A), implying that the hydrogen-bond formation between these two residues does play a role for the protein folding.
X
ABCC1 p.Ser685His 18088596:241:38
status: NEWX
ABCC1 p.Ser685His 18088596:241:184
status: NEWX
ABCC1 p.Ser685His 18088596:241:405
status: NEW262 Functional analyses of the Walker A serine mutants in NBD1, including membrane vesicles containing the complex-glycosylated mature and endoglycosidase H- resistant (Figs. 3B and 4D) S685H, S685C, S685A, S685D, S685N, D792S and S685D/D792S prepared from these temperature sensitive variants (Figs. 3 and 4) grown at 27 °C, indicate that these mutations affect ATP binding and ATP-dependent LTC4 transport (Table 1 and Figs. 5-7).
X
ABCC1 p.Ser685His 18088596:262:182
status: NEW