ABCG2 p.Gly553Glu
Predicted by SNAP2: | A: D (75%), C: D (80%), D: D (95%), E: D (91%), F: D (95%), H: D (95%), I: D (95%), K: D (95%), L: D (91%), M: D (95%), N: D (85%), P: D (95%), Q: D (95%), R: D (95%), S: D (85%), T: D (85%), V: D (91%), W: D (95%), Y: D (95%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Mutational studies of G553 in TM5 of ABCG2: a resi... Biochemistry. 2006 Apr 25;45(16):5251-60. Polgar O, Ozvegy-Laczka C, Robey RW, Morisaki K, Okada M, Tamaki A, Koblos G, Elkind NB, Ward Y, Dean M, Sarkadi B, Bates SE
Mutational studies of G553 in TM5 of ABCG2: a residue potentially involved in dimerization.
Biochemistry. 2006 Apr 25;45(16):5251-60., 2006-04-25 [PMID:16618113]
Abstract [show]
ABCG2 is an ATP-binding cassette half-transporter conferring resistance to chemotherapeutic agents such as mitoxantrone, irinotecan, and flavopiridol. With its one transmembrane and one ATP-binding domain, ABCG2 is thought to homodimerize for function. One conserved region potentially involved in dimerization is a three-amino acid sequence in transmembrane segment 5 (residues 552-554). Mutations in the corresponding residues in the Drosophila white protein (an orthologue of ABCG2) are thought to disrupt heterodimerization. We substituted glycine 553 with leucine (G553L) followed by stable transfection in HEK 293 cells. The mutant was not detectable on the cell surface, and markedly reduced protein expression levels were observed by immunoblotting. A deficiency in N-linked glycosylation was suggested by a reduction in molecular mass compared to that of the 72 kDa wild-type ABCG2. Similar results were observed with the G553E mutant. Confocal microscopy demonstrated mostly ER localization of the G553L mutant in HEK 293 cells, even when coexpressed with the wild-type protein. Despite its altered localization, the G553L and G553E mutants were cross-linked using amine-reactive cross-linkers with multiple arm lengths, suggesting that the monomers are in the proximity of each other but are unable to complete normal trafficking. Interestingly, when expressed in Sf9 insect cells, G553L moves to the cell membrane but is unable to hydrolyze ATP or transport the Hoechst dye. Still, when coexpressed, the mutant interferes with the Hoechst transport activity of the wild-type protein. These data show that glycine 553 is important for protein trafficking and are consistent with, but do not yet prove, its involvement in ABCG2 homodimerization.
Comments [show]
None has been submitted yet.
No. Sentence Comment
7 Similar results were observed with the G553E mutant.
X
ABCG2 p.Gly553Glu 16618113:7:39
status: VERIFIED9 Despite its altered localization, the G553L and G553E mutants were cross-linked using amine-reactive cross-linkers with multiple arm lengths, suggesting that the monomers are in the proximity of each other but are unable to complete normal trafficking.
X
ABCG2 p.Gly553Glu 16618113:9:48
status: VERIFIED48 The G553L and G553E mutants were generated by site-directed mutagenesis in the pcDNA3.1/ Myc-HisA(-) vector (Invitrogen) as previously described (23).
X
ABCG2 p.Gly553Glu 16618113:48:14
status: VERIFIED162 Evaluating the effect of a charged residue at position 553, we replaced the glycine with glutamic acid (G553E) and transfected HEK 293 cells.
X
ABCG2 p.Gly553Glu 16618113:162:104
status: VERIFIED164 Figure 9 shows that, like the leucine mutant, the G553E mutant did not move to the cell surface as verified by no staining with the 5D3 surface antibody on flow cytometry (Figure 9A).
X
ABCG2 p.Gly553Glu 16618113:164:50
status: VERIFIED166 The G553E mutant, like the G553L mutant, is represented by a double band on immunoblots, suggestive of impaired glycosylation, and in fact, following treatment with PNGase F, only one lower-molecular mass band was visible upon immunoblotting (data not shown).
X
ABCG2 p.Gly553Glu 16618113:166:4
status: VERIFIED169 We found that substitution of glycine 553 with either leucine (G553L) or glutamic acid (G553E) followed by transfection into HEK 293 cells resulted in a markedly reduced level of protein expression with impaired glycosylation and predominant ER retention.
X
ABCG2 p.Gly553Glu 16618113:169:88
status: VERIFIED192 In addition to the above-mentioned aberrant localization in the mammalian cells, the glycosylation pattern of the G553L and G553E mutants was also altered.
X
ABCG2 p.Gly553Glu 16618113:192:124
status: VERIFIED210 FIGURE 9: Surface expression of the G553E mutant in HEK 293 cells and cross-linking with DSG.
X
ABCG2 p.Gly553Glu 16618113:210:36
status: VERIFIED211 (A) The G553E mutant (six clones are shown) is not detectable on the cell surface with the 5D3 antibody by flow cytometry performed as described in the legend of Figure 2: negative control antibody (s) or 5D3 antibody (- - -).
X
ABCG2 p.Gly553Glu 16618113:211:8
status: VERIFIED212 (B) Cross-linking (as detailed in Figure 5) is observed following treatment of transfected HEK 293 cells with DSG in case of both the wild type (50 µg of protein) and the G553E mutant (100 µg of protein).
X
ABCG2 p.Gly553Glu 16618113:212:176
status: VERIFIED228 The G589E mutation in the white protein, analogous to our ABCG2 G553E mutant, apparently disrupts the white-brown heterodimer as suggested by the significantly reduced red eye pigment levels.
X
ABCG2 p.Gly553Glu 16618113:228:64
status: VERIFIED[hide] Towards understanding the mechanism of action of t... J Mol Graph Model. 2007 Mar;25(6):837-51. Epub 2006 Aug 30. Li YF, Polgar O, Okada M, Esser L, Bates SE, Xia D
Towards understanding the mechanism of action of the multidrug resistance-linked half-ABC transporter ABCG2: a molecular modeling study.
J Mol Graph Model. 2007 Mar;25(6):837-51. Epub 2006 Aug 30., [PMID:17027309]
Abstract [show]
The ATP-binding cassette protein ABCG2 is a member of a broad family of ABC transporters with potential clinical importance as a mediator of multidrug resistance. We carried out a homology and knowledge-based, and mutationally improved molecular modeling study to establish a much needed structural framework for the protein, which could serve as guidance for further genetic, biochemical, and structural analyses. Based on homology with known structures of both full-length and nucleotide-binding domains (NBD) of ABC transporters and structural knowledge of integral membrane proteins, an initial model of ABCG2 was established. Subsequent refinement to conform to the lipophilic index distributions in the transmembrane domain (TMD) and to the results of site-directed mutagenesis experiments led to an improved model. The complete ABCG2 model consists of two identical subunits facing each other in a closed conformation. The dimeric interface in the nucleotide-binding domain (NBD) involves a characteristic nucleotide sandwich and the interface in the TMD consists of the TM helices 1-3 of one subunit and the helices 5 and 6 of the other. The interface between the NBD and the TMD is bridged by the conserved structural motif between TM2 and TM3, the intracellular domain 1 (ICD1), and the terminal beta-strand (S6) of the central beta-sheet in the NBD. The apparent flexibility of the ICD1 may play a role in transmitting conformational changes from the NBD to the TMD or from the TMD to the NBD.
Comments [show]
None has been submitted yet.
No. Sentence Comment
179 T mutant binds more tightly to Rhodamin123 and inhibits rhodamine123 transport [19,51,21] G553L, G553E TM5 In drosophila, mutation at this position yields monomer.
X
ABCG2 p.Gly553Glu 17027309:179:97
status: VERIFIED244 Introducing a larger or charged residue at this position (G553L and G553E) would result in a clash of amino acid side chains and disrupt the dimer formation both in ABCG2 and in its Drosophila orthologue.
X
ABCG2 p.Gly553Glu 17027309:244:68
status: VERIFIED[hide] Homology modeling of breast cancer resistance prot... J Struct Biol. 2008 Apr;162(1):63-74. Epub 2007 Dec 15. Hazai E, Bikadi Z
Homology modeling of breast cancer resistance protein (ABCG2).
J Struct Biol. 2008 Apr;162(1):63-74. Epub 2007 Dec 15., [PMID:18249138]
Abstract [show]
BCRP (also known as ABCG2, MXR, and ABC-P) is a member of the ABC family that transports a wide variety of substrates. BCRP is known to play a key role as a xenobiotic transporter. Since discovering its role in multidrug resistance, considerable efforts have been made in order to gain deeper understanding of BCRP structure and function. The recent study was aimed at predicting BCRP structure by creating a homology model. Based on sequence similarity with known structures of full-length, NB and TM domain of ABC transporters, TM, NB, and linker regions of BCRP were defined. The NB domain of BCRP was modeled using MalK as a template. Based on secondary structure prediction of BCRP and comparison of the transmembrane connecting regions of known structures of ABC transporters, the TM domain arrangement of BCRP was established and was found to resemble to that of the recently published crystal structure of Sav1866. Thus, an initial alignment of TM domain of BCRP was established using Sav1866 as a template. This alignment was subsequently refined using constrains derived from secondary structure and TM predictions and the final model was built. Finally, the complete homodimer ABCG2 model was generated using Sav1866 as template. Furthermore, known ligands of BCRP were docked to our model in order to define possible binding sites. The results of molecular dockings of known BCRP substrates to the BCRP model were in agreement with recently published experimental data indicating multiple binding sites in BCRP.
Comments [show]
None has been submitted yet.
No. Sentence Comment
245 However, in our model, R482 cannot form interaction with rhodamine, but L484 is in interacting distance Table 3 Mutations on BCRP and their effect on its function Mutation Effect/results Reference V12M Did not effect Hemato and MTX transport Tamura et al. (2006) G51C Did not effect Hemato and MTX transport Tamura et al. (2006) K86M Inactivates transporter (dominant negative effect on ATPase activity); alters subcellular distribution Henriksen et al. (2005a) K86M Transporter inactive, but still able to bind ATP Ozvegy et al. (2002) Q126stop Defective porphyrin transport Tamura et al. (2006) Q141K Did not effect Hemato and MTX transport Tamura et al. (2006) T153M Did not effect Hemato and MTX transport Tamura et al. (2006) Q166E Did not effect Hemato and MTX transport Tamura et al. (2006) I206L Did not effect Hemato and MTX transport Tamura et al. (2006) F208S Defective porphyrin transport Tamura et al. (2006) S248P Defective porphyrin transport Tamura et al. (2006) E334stop Defective porphyrin transport Tamura et al. (2006) F431L Effects MTX transport Tamura et al. (2006) S441N Defective porphyrin transport Tamura et al. (2006) E446-mutants No drug resistance Miwa et al. (2003) R482G, R482T Effects MTX transport Tamura et al. (2006) R482T Substrate drug transport and inhibitor efficiency is not mediated by changes in drug-binding Pozza et al. (2006) R482G, R482T Substitution influence the substrate specificity of the transporter Ozvegy et al. (2002) R482G, R482T Altered substrate specificity Honjo et al. (2001) R482G Methotrexate not transported Chen et al. (2003b) Mitomo et al. (2003) R482G Resistance to hydrophilic antifolates in vitro, G482-ABCG2 mutation confers high-level resistance to various hydrophilic antifolates Shafran et al., (2005) R482G Three distinct drug, binding sites Clark et al. (2006) R482G Altered substrate specificity, granulocyte maturation uneffected Ujhelly et al. (2003) R482 mutants Higher resistance to mitoxantrone and doxorubicin than wt Miwa et al. (2003) R482X Affects substrate transport and ATP hydrolysis but not substrate binding Ejendal et al. (2006) F489L Impaired porphyrin transport Tamura et al. (2006) G553L; G553E Impaired trafficing, expression, and N-linked glycosylation Polgar et al. (2006) L554P Dominant negative effect on drug sensitivity Kage et al. (2002) N557D Resistance to MTX, but decreased transport of SN-38; N557E no change in transport compared to wt Miwa et al. (2003) F571I Did not effect Hemato and MTX transport Tamura et al. (2006) N590Y Did not effect Hemato and MTX transport Tamura et al. (2006) C592A Impaired function and expression Henriksen et al. (2005b) C592A/C608A Restored plasma mb expression; MTX transport normal, BODIPY-prazosin impaired Henriksen et al. (2005b) C603A Disulfide bridge; no functional or membrane targeting change Henriksen et al. (2005b) C608A Impaired function and expression Henriksen et al. (2005b) D620N Did not effect Hemato and MTX transport Tamura et al. (2006) H630X No change in transport Miwa et al. (2003) Cand N-terminal truncated Impaired trafficing Takada et al. (2005) with the ligand.
X
ABCG2 p.Gly553Glu 18249138:245:2182
status: NEW[hide] Structure and function of the human breast cancer ... Curr Drug Metab. 2010 Sep;11(7):603-17. Ni Z, Bikadi Z, Rosenberg MF, Mao Q
Structure and function of the human breast cancer resistance protein (BCRP/ABCG2).
Curr Drug Metab. 2010 Sep;11(7):603-17., [PMID:20812902]
Abstract [show]
The human breast cancer resistance protein (BCRP/ABCG2) is the second member of the G subfamily of the large ATP-binding cassette (ABC) transporter superfamily. BCRP was initially discovered in multidrug resistant breast cancer cell lines where it confers resistance to chemotherapeutic agents such as mitoxantrone, topotecan and methotrexate by extruding these compounds out of the cell. BCRP is capable of transporting non-chemotherapy drugs and xenobiotiocs as well, including nitrofurantoin, prazosin, glyburide, and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. BCRP is frequently detected at high levels in stem cells, likely providing xenobiotic protection. BCRP is also highly expressed in normal human tissues including the small intestine, liver, brain endothelium, and placenta. Therefore, BCRP has been increasingly recognized for its important role in the absorption, elimination, and tissue distribution of drugs and xenobiotics. At present, little is known about the transport mechanism of BCRP, particularly how it recognizes and transports a large number of structurally and chemically unrelated drugs and xenobiotics. Here, we review current knowledge of structure and function of this medically important ABC efflux drug transporter.
Comments [show]
None has been submitted yet.
No. Sentence Comment
293 Leu or Glu substitution of Gly553 led to rapid degradation and retention in the endoplasm reticulum of BCRP [130], suggesting that Gly553 is critical for plasma membrane targeting and proper folding of the transporter.
X
ABCG2 p.Gly553Glu 20812902:293:7
status: VERIFIED[hide] Posttranslational negative regulation of glycosyla... Biochem Biophys Res Commun. 2011 Jan 21;404(3):853-8. Epub 2010 Dec 22. Sugiyama T, Shuto T, Suzuki S, Sato T, Koga T, Suico MA, Kusuhara H, Sugiyama Y, Cyr DM, Kai H
Posttranslational negative regulation of glycosylated and non-glycosylated BCRP expression by Derlin-1.
Biochem Biophys Res Commun. 2011 Jan 21;404(3):853-8. Epub 2010 Dec 22., 2011-01-21 [PMID:21184741]
Abstract [show]
Human breast cancer resistance protein (BCRP)/MXR/ABCG2 is a well-recognized ABC half-transporter that is highly expressed at the apical membrane of many normal tissues and cancer cells. BCRP facilitates disposition of endogenous and exogenous harmful xenobiotics to protect cells/tissues from xenobiotic-induced toxicity. Despite the enormous impact of BCRP in the physiological and pathophysiological regulation of the transport of a wide variety of substrates, little is known about the factors that regulate posttranslational expression of BCRP. Here, we identified Derlin-1, a member of a family of proteins that bears homology to yeast Der1p, as a posttranslational regulator of BCRP expression. Overexpression of Derlin-1 suppressed ER to Golgi transport of wild-type (WT) BCRP that is known to be efficiently trafficked to the plasma membrane. On the other hand, protein expression of N596Q variant of BCRP, N-linked glycosylation-deficient mutant that preferentially undergoes ubiquitin-mediated ER-associated degradation (ERAD), was strongly suppressed by the overexpression of Derlin-1, whereas knockdown of Derlin-1 stabilized N596Q protein, suggesting a negative regulatory role of Derlin-1 for N596Q protein expression. Notably, knockdown of Derlin-1 also stabilized the expression of tunicamycin-induced deglycosylated WT BCRP protein, implying the importance of glycosylation state for the recognition of BCRP by Derlin-1. Thus, our data demonstrate that Derlin-1 is a negative regulator for both glycosylated and non-glycosylated BCRP expression and provide a novel posttranslational regulatory mechanism of BCRP by Derlin-1.
Comments [show]
None has been submitted yet.
No. Sentence Comment
163 Further, we could also assess the impact of Der- lin-1 on the expression of other BCRP variants such as R383A, G553L and G553E variants, which are also shown to be impaired N-linked glycosylation like N596Q BCRP [27,28].
X
ABCG2 p.Gly553Glu 21184741:163:121
status: VERIFIED