ABCG2 p.Arg160Gln
Predicted by SNAP2: | A: D (85%), C: D (80%), D: D (95%), E: D (95%), F: D (91%), G: D (95%), H: D (80%), I: D (85%), K: D (59%), L: D (85%), M: D (80%), N: D (91%), P: D (95%), Q: D (75%), S: D (91%), T: D (91%), V: D (91%), W: D (95%), Y: D (91%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, G: D, H: D, I: D, K: N, L: D, M: D, N: D, P: D, Q: N, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Pharmacogenomics of the human ABC transporter ABCG... Naturwissenschaften. 2005 Oct;92(10):451-63. Ishikawa T, Tamura A, Saito H, Wakabayashi K, Nakagawa H
Pharmacogenomics of the human ABC transporter ABCG2: from functional evaluation to drug molecular design.
Naturwissenschaften. 2005 Oct;92(10):451-63., [PMID:16160819]
Abstract [show]
In the post-genome-sequencing era, emerging genomic technologies are shifting the paradigm for drug discovery and development. Nevertheless, drug discovery and development still remain high-risk and high-stakes ventures with long and costly timelines. Indeed, the attrition of drug candidates in preclinical and development stages is a major problem in drug design. For at least 30% of the candidates, this attrition is due to poor pharmacokinetics and toxicity. Thus, pharmaceutical companies have begun to seriously re-evaluate their current strategies of drug discovery and development. In that light, we propose that a transport mechanism-based design might help to create new, pharmacokinetically advantageous drugs, and as such should be considered an important component of drug design strategy. Performing enzyme- and/or cell-based drug transporter, interaction tests may greatly facilitate drug development and allow the prediction of drug-drug interactions. We recently developed methods for high-speed functional screening and quantitative structure-activity relationship analysis to study the substrate specificity of ABC transporters and to evaluate the effect of genetic polymorphisms on their function. These methods would provide a practical tool to screen synthetic and natural compounds, and these data can be applied to the molecular design of new drugs. In this review article, we present an overview on the genetic polymorphisms of human ABC transporter ABCG2 and new camptothecin analogues that can circumvent AGCG2-associated multidrug resistance of cancer.
Comments [show]
None has been submitted yet.
No. Sentence Comment
113 These contradictory expression and localization data for ABCG2 variants indicate that differences in transfection conditions (transient or stable expression), the copy number of cDNA incorporated in genomic DNA or other cellular determinants may variably Table 2 Frequencies of ABCG2 alleles in different ethnic groups Position Ethnic group Variant allele Allele Reference Amino acid cDNA N Hetero Homo Frequency (%) V12M c.34G>A Japanese 29 9 1 19.0 Imai et al. (2002) Japanese 10 - - 15.0 Zamber et al. (2003) Japanese 220 61 8 17.5 Kobayashi et al. (2005) Chinese 10 - - 20.0 Zamber et al. (2003) Southeast Asians 10 - - 45.0 Zamber et al. (2003) Pacific Islanders 7 - - 64.0 Zamber et al. (2003) Swedish 60 2 0 1.7 B¨ackstr¨om et al. (2003) Dutch 100 11 1 6.5 Bosch et al. (2005) Caucasian 86 - - 2.0 Zamber et al. (2003) Caucasian 150 27 2 10.3 Mizuarai et al. (2004) Caucasian 150 11 0 3.7 Kobayashi et al. (2005) Ashkenazi Jewish 10 - - 10.0 Zamber et al. (2003) Middle Eastern 20 - - 5.0 Zamber et al. (2003) Africans North of Sahara 7 - - 14.0 Zamber et al. (2003) African American 150 17 1 6.3 Kobayashi et al. (2005) Mexicans 10 - - 10.0 Zamber et al. (2003) Hispanic Livers 5 - - 40.0 Zamber et al. (2003) Mexican Indians 5 - - 90.0 Zamber et al. (2003) Q126Stop c.376C>T Japanese 124 3 0 1.2 Imai et al. (2002) Japanese 60 2 0 1.7 Itoda et al. (2003) Japanese 220 4 0 0.9 Kobayashi et al. (2005) Caucasian 150 0 0 0.0 Mizuarai et al. (2004) Caucasian 150 0 0 0.0 Kobayashi et al. (2005) African American 150 0 0 0.0 Kobayashi et al. (2005) Q141K c.421C>A Japanese 124 48 9 26.6 Imai et al. (2002) Japanese 10 - - 35.0 Zamber et al. (2003) Japanese 220 90 27 32.7 Kobayashi et al. (2005) Chinese 95 43 11 34.2 de Jong et al. (2004) Chinese 10 - - 35.0 Zamber et al. (2003) Southeast Asians 10 - - 15.0 Zamber et al. (2003) Pacific Islanders 7 - - 14.0 Zamber et al. (2003) Swedish 60 10 1 10.0 B¨ackstr¨om et al. (2003) Dutch 100 20 2 12.0 Bosch et al. (2005) Caucasian 85 - - 14.0 Zamber et al. (2003) Caucasian 172 33 3 11.3 de Jong et al. (2004) Caucasian 150 22 2 8.7 Mizuarai et al. (2004) Caucasian 150 25 4 11.0 Kobayashi et al. (2005) Ashkenazi Jewish 10 - - 5.0 Zamber et al. (2003) Middle Eastern 20 - - 13.0 Zamber et al. (2003) Africans North of Sahara 7 - - 0.0 Zamber et al. (2003) African, Sub-Saharan 938 14 1 0.9 de Jong et al. (2004) African American 24 - - 0.0 Zamber et al. (2003) African American 150 5 1 2.3 Kobayashi et al. (2005) African American 94 8 1 5.3 de Jong et al. (2004) Mexicans 10 - - 5.0 Zamber et al. (2003) Hispanic Livers 5 - - 10.0 Zamber et al. (2003) Mexican Indians 5 - - 10.0 Zamber et al. (2003) R160Q c.479G>A Dutch 100 1 0 0.5 Bosch et al. (2005) I206L c.616A>C Japanese 10 - - 0.0 Zamber et al. (2003) Chinese 10 - - 0.0 Zamber et al. (2003) Southeast Asians 10 - - 0.0 Zamber et al. (2003) Pacific Islanders 7 - - 0.0 Zamber et al. (2003) Caucasian 65 - - 0.0 Zamber et al. (2003) Table 2 Continued Position Ethnic group Variant allele Allele Reference Amino acid cDNA N Hetero Homo Frequency (%) Ashkenazi Jewish 10 - - 0.0 Zamber et al. (2003) Middle Eastern 20 - - 0.0 Zamber et al. (2003) Africans North of Sahara 7 - - 0.0 Zamber et al. (2003) African American 15 - - 0.0 Zamber et al. (2003) Mexicans 10 - - 0.0 Zamber et al. (2003) Hispanic Livers 5 - - 10.0 Zamber et al. (2003) Mexican Indians 5 - - 0.0 Zamber et al. (2003) F431L c.1291T>C Japanese 60 1 0 0.8 Itoda et al. (2003) S441N c.1322G>A Japanese 100 1 0 0.5 Kobayashi et al. (2005) F489L c.1465T>C Japanese 60 1 0 0.8 Itoda et al. (2003) Japanese 100 1 0 0.5 Kobayashi et al. (2005) R575Stop c.1723C>T Dutch 100 1 0 0.5 Bosch et al. (2005) N590Y c.1768A>T Caucasian 65 - - 1.0 Zamber et al. (2003) Caucasian 150 1 0 0.3 Mizuarai et al. (2004) African Americans 15 - - 0.0 Zamber et al. (2003) D620N c.1858G>A Dutch 100 1 0 0.5 Bosch et al. (2005) affect the cellular processing and sorting of these proteins.
X
ABCG2 p.Arg160Gln 16160819:113:2675
status: NEW[hide] Genetic polymorphisms of ATP-binding cassette tran... Expert Opin Pharmacother. 2005 Nov;6(14):2455-73. Sakurai A, Tamura A, Onishi Y, Ishikawa T
Genetic polymorphisms of ATP-binding cassette transporters ABCB1 and ABCG2: therapeutic implications.
Expert Opin Pharmacother. 2005 Nov;6(14):2455-73., [PMID:16259577]
Abstract [show]
Pharmacogenomics, the study of the influence of genetic factors on drug action, is increasingly important for predicting pharmacokinetics profiles and/or adverse reactions to drugs. Drug transporters, as well as drug metabolism play pivotal roles in determining the pharmacokinetic profiles of drugs and their overall pharmacological effects. There is an increasing number of reports addressing genetic polymorphisms of drug transporters. However, information regarding the functional impact of genetic polymorphisms in drug transporter genes is still limited. Detailed functional analysis in vitro may provide clear insight into the biochemical and therapeutic significance of genetic polymorphisms. This review addresses functional aspects of the genetic polymorphisms of human ATP-binding cassette transporters, ABCB1 and ABCG2, which are critically involved in the pharmacokinetics of drugs.
Comments [show]
None has been submitted yet.
No. Sentence Comment
225 Location Position Allele Amino acid Allele frequency in Caucasian populations Allele frequency in Japanese populatins Allele frequency in African populations n % n % n % Exon 2 34 G A 12 Val 12 Met 546 94.4 5.6 259 82.4 17.6 181 93.7 6.3 Exon 4 376 C T 126 Gln 126 stop 300 100 0 404 98.9 1.1 150 100 0 Exon 5 421 C A 141 Gln 141 Lys 717 89.0 11.0 354 69.4 30.6 1213 98.6 1.4 Exon 5 479 G A 160 Arg 160 Gln 100 99.5 0.5 ND ND ND ND ND ND Exon 11 1291 T C 431 Phe 431 Leu ND ND ND 60 99.2 0.8 ND ND ND Exon 11 1322 G A 441 Ser 441 Asn ND ND ND 100 99.5 0.5 ND ND ND Exon 12 1465 T C 489 Phe 489 Leu ND ND ND 160 99.4 0.6 ND ND ND Exon 14 1723 C T 575 Arg 575 stop 100 99.5 0.5 ND ND ND ND ND ND Exon 15 1768 A T 590 Asn 590 Tyr 215 99.5 0.5 ND ND ND 15 100 0 Exon 16 1858 T A 620 Asp 620 Asp 100 99.5 0.5 ND ND ND ND ND ND Data are from [129-135,137].
X
ABCG2 p.Arg160Gln 16259577:225:395
status: NEW250 COOH H2N N590Y V12M G51C Q126stop Q141K T153M Q166E I206L F208S S248P E334stop F431L F489L D620N R482G R482T S441N F571I EXTRACELLULAR INTRACELLULAR R160Q R575stop ATP-binding site (transient or stable expression), the copy number of cDNA incorporated in genomic DNA or other cellular determinants may variably affect the cellular processing and sorting of these proteins.
X
ABCG2 p.Arg160Gln 16259577:250:149
status: NEW[hide] Functional validation of the genetic polymorphisms... Mol Pharmacol. 2006 Jul;70(1):287-96. Epub 2006 Apr 11. Tamura A, Watanabe M, Saito H, Nakagawa H, Kamachi T, Okura I, Ishikawa T
Functional validation of the genetic polymorphisms of human ATP-binding cassette (ABC) transporter ABCG2: identification of alleles that are defective in porphyrin transport.
Mol Pharmacol. 2006 Jul;70(1):287-96. Epub 2006 Apr 11., [PMID:16608919]
Abstract [show]
The ATP-binding cassette (ABC) transporter ABCG2 has been implicated to play a significant role in the response of patients to medication and/or the risk of diseases. To clarify the possible physiological or pathological relevance of ABCG2 polymorphisms, we have functionally validated single nucleotide polymorphisms (SNP) of ABCG2. In the present study, based on the currently available data on SNPs and acquired mutations, we have created a total of 18 variant forms of ABCG2 (V12M, G51C, Q126stop, Q141K, T153M, Q166E, I206L, F208S, S248P, E334stop, F431L, S441N, R482G, R482T, F489L, F571I, N590Y, and D620N) by site-directed mutagenesis and expressed them in insect cells. Because porphyrins are considered to be endogenous substrates for ABCG2, we have investigated the porphyrin transport activity of those variant forms in vitro. We herein provide evidence that the variants Q126stop, F208S, S248P, E334stop, and S441N are defective in porphyrin transport, whereas F489L exhibited impaired transport, approximately 10% of the activity observed for the wild type. Furthermore, Flp-In-293 cells expressing those variants were photosensitive. Thus, among those genetic polymorphisms of ABCG2, at least the hitherto validated alleles of Q126stop, S441N, and F489L are suggested to be of clinical importance related to the potential risk of porphyria.
Comments [show]
None has been submitted yet.
No. Sentence Comment
224 Potential Risk Amino Acid Transport Allele Frequency cDNA Position Located on Exon Allele Data Sourcea Hemato MTX Wild-Type Allele % V12M ϩϩ ϩϩ 2.0-90.0 34 2 G A 1, 2, 4, 5, 7, 8 ૽૽ Q126stop - - 0.0-1.7 376 4 C T 1, 3, 5, 7 Q141K ϩϩ ϩϩ 0.0-35.5 421 5 C A 1, 2, 4, 5, 6, 7, 8 T153M ϩϩ ϩϩ 3.3 458 5 C T 5 R160Q N.D. N.D. 0.5 479 5 G A 8 Q166E ϩϩ ϩϩ N.D. 496 5 C G NCBI dbSNP rs1061017 I206L ϩϩ ϩϩ 10.0 616 6 A C 2 ૽૽ F208S - - N.D. 623 6 T C NCBI dbSNP rs1061018 ૽૽ S248P - - N.D. 742 7 T C NCBI dbSNP rs3116448 ૽૽ E334stop - - N.D. 1000 9 G T NCBI dbSNP rs3201997 F431L ϩϩ - 0.8 1291 11 T C 3 ૽૽ S441N - - 0.5 1322 11 G A 7 ૽ F489L ϩ - 0.5-0.8 1465 12 T C 3, 7 F571L ϩϩ ϩϩ 0.5 1711 14 T A NCBI dbSNP rs9282571 (૽૽) R575stop N.D. N.D. 0.5 1723 14 C T 8 N590Y ϩϩ ϩϩ 0.0-1.0 1768 15 A T 2, 5 D620N ϩϩ ϩϩ 0.5 1858 16 G A 8 Hemato, hematoporphyrin; NCBI, National Center for Biotechnology Information; N.D., not determined; ૽, risk of porphyria; (૽), potential risk is assumed as the lack of transport activity being as a result of a truncated protein.
X
ABCG2 p.Arg160Gln 16608919:224:387
status: NEW[hide] Genetic variation and haplotype structure of the A... Drug Metab Pharmacokinet. 2006 Apr;21(2):109-21. Maekawa K, Itoda M, Sai K, Saito Y, Kaniwa N, Shirao K, Hamaguchi T, Kunitoh H, Yamamoto N, Tamura T, Minami H, Kubota K, Ohtsu A, Yoshida T, Saijo N, Kamatani N, Ozawa S, Sawada J
Genetic variation and haplotype structure of the ABC transporter gene ABCG2 in a Japanese population.
Drug Metab Pharmacokinet. 2006 Apr;21(2):109-21., [PMID:16702730]
Abstract [show]
The ATP-binding cassette transporter, ABCG2, which is expressed at high levels in the intestine and liver, functions as an efflux transporter for many drugs, including clinically used anticancer agents such as topotecan and the active metabolite of irinotecan (SN-38). In this study, to elucidate the linkage disequilibrium (LD) profiles and haplotype structures of ABCG2, we have comprehensively searched for genetic variations in the putative promoter region, all the exons, and their flanking introns of ABCG2 from 177 Japanese cancer patients treated with irinotecan. Forty-three genetic variations, including 11 novel ones, were found: 5 in the 5'-flanking region, 13 in the coding exons, and 25 in the introns. In addition to 9 previously reported nonsynonymous single nucleotide polymorphisms (SNPs), 2 novel nonsynonymous SNPs, 38C>T (Ser13Leu) and 1060G>A (Gly354Arg), were found with minor allele frequencies of 0.3%. Based on the LD profiles between the SNPs and the estimated past recombination events, the region analyzed was divided into three blocks (Block -1, 1, and 2), each of which spans at least 0.2 kb, 46 kb, and 13 kb and contains 2, 24, and 17 variations, respectively. The two, eight, and five common haplotypes detected in 10 or more patients accounted for most (>90%) of the haplotypes inferred in Block -1, Block 1, and Block 2, respectively. The SNP and haplotype distributions in Japanese were different from those reported previously in Caucasians. This study provides fundamental information for the pharmacogenetic studies investigating the relationship between the genetic variations in ABCG2 and pharmacokinetic/pharmacodynamic parameters.
Comments [show]
None has been submitted yet.
No. Sentence Comment
86 Recently, the two nonsynonymous SNPs, 479GÀA (Arg160Gln) and 1723CÀT (Arg575X), have been reported by Bosch et al.21) Arg160Gln and Arg575X were found as heterozygotes in single Asian and Caucasian subjects, respectively.
X
ABCG2 p.Arg160Gln 16702730:86:51
status: VERIFIEDX
ABCG2 p.Arg160Gln 16702730:86:128
status: VERIFIED87 Therefore, the distribution of 479GÀA (Arg160Gln) might be restricted in Asians, while 1723CÀT (Arg575X) is likely to be detected both in Caucasians and Japanese at low frequencies.
X
ABCG2 p.Arg160Gln 16702730:87:44
status: VERIFIED130 In Block 1, seven haplotype groups (*1 to *7) were inferred, and the groups of *2 to *7 harbored non-synonymous SNPs, 421CÀA (Gln141Lys) (*2), 34GÀA (Val12Met) (*3), 376CÀT (Gln126X) (*4), 38CÀT (Ser13Leu) (*5), 479GÀA (Arg160Gln) (*6), and 1060GÀA (Gly354Arg) (*7).
X
ABCG2 p.Arg160Gln 16702730:130:244
status: NEW158 The functional eects of the other ve nonsynonymous SNPs (Ser13Leu, Arg160Gln, Gly354Arg, Phe431Leu, and Phe489Leu) have not yet been characterized.
X
ABCG2 p.Arg160Gln 16702730:158:79
status: VERIFIED159 Using the PolyPhen program (http:WW www.bork.embl-heidelberg.deWPolyPhenW) to predict the functional eect of these amino acid substitutions, three substitutions, Ser13Leu, Arg160Gln, and Gly354Arg, were estimated to cause possible alterations in protein function based on the PSIC (position specic independent count) prole score.
X
ABCG2 p.Arg160Gln 16702730:159:178
status: VERIFIED160 Notably, Arg160Gln is located in the functionally important ATP-binding region between the Waker A (amino acids 8089) and Walker B (amino acids 206210) motifs.
X
ABCG2 p.Arg160Gln 16702730:160:9
status: VERIFIED[hide] Drug-induced phototoxicity evoked by inhibition of... Expert Opin Drug Metab Toxicol. 2008 Mar;4(3):255-72. Tamura A, An R, Hagiya Y, Hoshijima K, Yoshida T, Mikuriya K, Ishikawa T
Drug-induced phototoxicity evoked by inhibition of human ABC transporter ABCG2: development of in vitro high-speed screening systems.
Expert Opin Drug Metab Toxicol. 2008 Mar;4(3):255-72., [PMID:18363541]
Abstract [show]
BACKGROUND: Photosensitivity depends on both genetic and environmental factors. Pheophorbide a, present in various plant-derived foods and food supplements, can be absorbed by the small intestine. Accumulation of pheophorbide a and porphyrins in the systemic blood circulation can result in phototoxic lesions on light-exposed skin. OBJECTIVE: As the human ATP-binding cassette (ABC) transporter ABCG2 has been suggested to be critically involved in porphyrin-mediated photosensitivity, we aimed to develop in vitro screening systems for drug-induced phototoxicity. CONCLUSION: Functional impairment owing to inhibition of ABCG2 by drugs or its genetic polymorphisms can lead to the disruption of porphyrin homeostasis. This review article provides an overview on drug-induced photosensitivity, as well as our hypothesis on a potential role of ABCG2 in phototoxicity.
Comments [show]
None has been submitted yet.
No. Sentence Comment
230 Plasma membrane Outside Inside ATP-binding cassette H2 N COOH V12M G51C Q126stop Q141K T153M R160Q Q166E I206L F208S S248P E334stop F431L F489L S441N R482G R482T F571I R575stop N590Y D620N T542A A528T D296H P269S A.
X
ABCG2 p.Arg160Gln 18363541:230:93
status: NEW[hide] Pharmacogenomics of MRP transporters (ABCC1-5) and... Drug Metab Rev. 2008;40(2):317-54. Gradhand U, Kim RB
Pharmacogenomics of MRP transporters (ABCC1-5) and BCRP (ABCG2).
Drug Metab Rev. 2008;40(2):317-54., [PMID:18464048]
Abstract [show]
Elucidation of the key mechanisms that confer interindividual differences in drug response remains an important focus of drug disposition and clinical pharmacology research. We now know both environmental and host genetic factors contribute to the apparent variability in drug efficacy or in some cases, toxicity. In addition to the widely studied and recognized genes involved in the metabolism of drugs in clinical use today, we now recognize that membrane-bound proteins, broadly referred to as transporters, may be equally as important to the disposition of a substrate drug, and that genetic variation in drug transporter genes may be a major contributor of the apparent intersubject variation in drug response, both in terms of attained plasma and tissue drug level at target sites of action. Of particular relevance to drug disposition are members of the ATP Binding Cassette (ABC) superfamily of efflux transporters. In this review a comprehensive assessment and annotation of recent findings in relation to genetic variation in the Multidrug Resistance Proteins 1-5 (ABCC1-5) and Breast Cancer Resistance Protein (ABCG2) are described, with particular emphasis on the impact of such transporter genetic variation to drug disposition or efficacy.
Comments [show]
None has been submitted yet.
No. Sentence Comment
250 It should be noted that many xeno- and endobiotic BCRP Figure 5 Predicted membrance topology of BCRP (ABCG2) based on hydrophobicity analysis. Locations of the non-synonymous polymorphisms are indicated with arrows. See Table 5 for allele frequencies and description of funtional consequences. NH2 COOH NBD Val12Met Gly51Cys Gln126* Ala149Pro Gln141Lys Thr153Met Arg160Gln Arg163Lys Gln166Glu Phe506Ser Phe507Leu Val508Leu Met509* Phe489Leu Ser441Asn Phe431Leu Glu334* Ile206Leu Ala315del Thr316del Phe208Ser Asp296His Ser248Pro Pro269Ser Phe571Ile Arg575* Asn590Tyr Asp620Asn in out Membrane BCRP (ABCG2) NBD Val12Met NBDNBD Val12Met substrates are also transported by other efflux transporters, especially P-glycoprotein, thus extrapolating BCRP related in vitro data to the in vivo situation may be difficult.
X
ABCG2 p.Arg160Gln 18464048:250:363
status: VERIFIED[hide] Human ABC transporter ABCG2 in cancer chemotherapy... J Exp Ther Oncol. 2009;8(1):5-24. Ishikawa T, Nakagawa H
Human ABC transporter ABCG2 in cancer chemotherapy and pharmacogenomics.
J Exp Ther Oncol. 2009;8(1):5-24., [PMID:19827267]
Abstract [show]
The ability of cancer cells to acquire resistance to multiple anticancer agents, termed multidrug resistance, is often mediated by overexpression of ATP-binding cassette (ABC) transporters that remove drugs out of the cell against a concentration gradient. ABCG2, or breast cancer resistance protein (BCRP), is an ABC transporter that has been the subject of intense study since its discovery a decade ago. While ABCG2 overexpression has been demonstrated in cancer cells after in vitro drug treatment, endogenous ABCG2 expression in certain cancers is considered as a reflection of the differentiated phenotype of the cell of origin and likely contributes to intrinsic drug resistance. Notably, ABCG2 is often expressed in stem cell populations, where it plays a critical role in cellular protection. ABCG2 exhibits a broad range of substrate specificity. New technologies of high-speed screening and quantitative structure-activity-relationship (QSAR) analysis have been developed to analyze the interactions of drugs with ABCG2. As ABCG2 reportedly transports porphyrins, its contribution to photodynamic therapy of human cancer is also implicated. Protein expression levels of ABCG2 in cancer cells are regulated by both transcriptional activation and protein degradation. The ABCG2 protein undergoes endosomal and/or ubiquitin-mediated proteasomal degradations. Furthermore, genetic polymorphisms in the ABCG2 gene are important factors in cancer chemotherapy to circumvent adverse effects and/or to enhance the efficacy of anticancer drugs. The present review article addresses recent advances in molecular pharmacology and pharmacogenomics of ABCG2 and provides novelideas to improve cancer chemotherapy.
Comments [show]
None has been submitted yet.
No. Sentence Comment
222 COOH H2N N590Y V12M G51C Q126stop Q141K T153M Q166E I206L F208S S248P E334stop F431L F489L D620N R482G R482T S441N F571I OUT IN R160Q R575stop ATP-binding site Figure 7. Continued A 005-024 pp JETO-0900616-TI (Review).indd 8/7/2009 3:59:50 19 Q141K has been associated with lower levels of protein expression and impaired transport in vitro (Imai et al., 2002; Kobayashi et al., 2005; Misuarai et al., 2004; Zamber et al., 2003; Morisaki et al., 2008; Kondo et al., 2004).
X
ABCG2 p.Arg160Gln 19827267:222:128
status: NEW[hide] Key Role of Human ABC Transporter ABCG2 in Photody... Adv Pharmacol Sci. 2010;2010:587306. Epub 2010 Jul 8. Ishikawa T, Nakagawa H, Hagiya Y, Nonoguchi N, Miyatake S, Kuroiwa T
Key Role of Human ABC Transporter ABCG2 in Photodynamic Therapy and Photodynamic Diagnosis.
Adv Pharmacol Sci. 2010;2010:587306. Epub 2010 Jul 8., [PMID:21188243]
Abstract [show]
Accumulating evidence indicates that ATP-binding cassette (ABC) transporter ABCG2 plays a key role in regulating the cellular accumulation of porphyrin derivatives in cancer cells and thereby affects the efficacy of photodynamic therapy and photodynamic diagnosis. The activity of porphyrin efflux can be affected by genetic polymorphisms in the ABCG2 gene. On the other hand, Nrf2, an NF-E2-related transcription factor, has been shown to be involved in oxidative stress-mediated induction of the ABCG2 gene. Since patients have demonstrated individual differences in their response to photodynamic therapy, transcriptional activation and/or genetic polymorphisms of the ABCG2 gene in cancer cells may affect patients' responses to photodynamic therapy. Protein kinase inhibitors, including imatinib mesylate and gefitinib, are suggested to potentially enhance the efficacy of photodynamic therapy by blocking ABCG2-mediated porphyrin efflux from cancer cells. This review article provides an overview on the role of human ABC transporter ABCG2 in photodynamic therapy and photodynamic diagnosis.
Comments [show]
None has been submitted yet.
No. Sentence Comment
177 Gefitinib and imatinib are new anticancer drugs Outside Plasma membrane Inside H2N COOH V12M G51C Q126stop Q141K T153M R160Q Q166E I206L F208S S248P E334stop F431L F489L S441N R482G R482T F571I R575stop N590Y D620N T542A A528T D296H P269S ATP-binding cassette (a) 0 0.1 0.3 0.4 0.2 0.5 Mock WT V12M G51C Q126stop Q141K T153M Q166E I206L F208S S248P E334stop F431L S441N F489L F571I N590Y D620N R482G R482T ATP-dependenthematoporphyrin transport(nmol/min/mgprotein) (b) Figure 4: (a) Schematic illustration of human ABCG2 and its nonsynonymous polymorphisms.
X
ABCG2 p.Arg160Gln 21188243:177:121
status: NEW[hide] Structure and function of BCRP, a broad specificit... Arch Toxicol. 2014 Jun;88(6):1205-48. doi: 10.1007/s00204-014-1224-8. Epub 2014 Apr 29. Jani M, Ambrus C, Magnan R, Jakab KT, Beery E, Zolnerciks JK, Krajcsi P
Structure and function of BCRP, a broad specificity transporter of xenobiotics and endobiotics.
Arch Toxicol. 2014 Jun;88(6):1205-48. doi: 10.1007/s00204-014-1224-8. Epub 2014 Apr 29., [PMID:24777822]
Abstract [show]
The discovery and characterization of breast cancer resistance protein (BCRP) as an efflux transporter conferring multidrug resistance has set off a remarkable trajectory in the understanding of its role in physiology and disease. While the relevance in drug resistance and general pharmacokinetic properties quickly became apparent, the lack of a characteristic phenotype in genetically impaired animals and humans cast doubt on the physiological importance of this ATP-binding cassette family member, similarly to fellow multidrug transporters, despite well-known endogenous substrates. Later, high-performance genetic analyses and fine resolution tissue expression data forayed into unexpected territories concerning BCRP relevance, and ultimately, the rise of quantitative proteomics allows putting observed interactions into absolute frameworks for modeling and insight into interindividual and species differences. This overview summarizes existing knowledge on the BCRP transporter on molecular, tissue and system level, both in physiology and disease, and describes a selection of experimental procedures that are the most widely applied for the identification and characterization of substrate and inhibitor-type interactions.
Comments [show]
None has been submitted yet.
No. Sentence Comment
95 Histone deacetylase inhibitors rescue newly synthesized transporter proteins and prevent aggresome targeting by disturbing TableÊf;1ߒߙMajor non-synonymous single-nucleotide polymorphisms found in the ABCG2 coding region Allele frequencies presented in this table do not reflect interethnic differences Mutation Position in BCRP Cellular effects of SNP Allele frequency % References 34G>A, V12M (rs2231137) N-terminus Lower expression, no impact on function 0-29.8 Tamura et al. (2006), Bosch et al. (2005), Mizuarai et al. (2004), Imai et al. (2002), Kobayashi et al. (2005), Backstrom et al. (2003), Honjo et al. (2002), Kondo et al. (2004) 151G>T, G51C N-terminus Slightly overexpressed, decreased transport activity 0.1 Tamura et al. (2006), Yoshioka et al. (2007) 376C>T, Q126X (rs7255271) NBD No expression, no activity 0-1.7 Tamura et al. (2006), Mizuarai et al. (2004), Itoda et al. (2003), Imai et al. (2002), Kobayashi et al. (2005), Kondo et al. (2004) 421C>A, Q141K (rs2231142) NBD Lower expression, decreased transport activity, substrate specificity altered 0-35.7 Tamura et al. (2006), Bosch et al. (2005), Mizuarai et al. (2004), Imai et al. (2002), Kobayashi et al. (2005), Backstrom et al. (2003), Honjo et al. (2002), Kondo et al. (2004) 458C>T, T153 M NBD Slightly lower expression, no impact on function 3.3 Tamura et al. (2006), Mizuarai et al. (2004) 479G>A, R160Q NBD Not determined 0.5 Bosch et al. (2005), Tamura et al. (2006) 496C>G, Q166E (rs1061017) NBD Slightly lower expression, no impact on function 0-1.1 Tamura et al. (2006), Kondo et al. (2004), Yoshioka et al. (2007) 616A>C, I206L (rs12721643) NBD Well expressed, decreased transport activity 0-10.0 Tamura et al. (2006), Zamber et al. (2003), Vethanayagam et al. (2005), Ieiri (2012a) 623T>C, F208 (rs1061018) NBD No expression, no transport activity 0.9-3.9 Tamura et al. (2006) 742T>C, S248P (rs3116448) NBD Well expressed, no transport activity 0.5 Tamura et al. (2006), Yoshioka et al. (2007) 1000G>T, E334X (rs3201997) NBD No expression, no transport activity Not determined Tamura et al. (2006), Ishikawa et al. (2005) 1291T>C F431L ECL1 Lower expression, substrate specificity altered 0.6-0.8 Tamura et al. (2006), Itoda et al. (2003), Yoshioka et al. (2007) 1322G>A, S441 N ECL1 Slightly lower expression, no transport activity 0.5 Tamura et al. (2006), Kobayashi et al. (2005), Kondo et al. (2004) 1465T>C, F489L TM3 Slightly lower expression, no transport activity 0.5-0.8 Tamura et al. (2006), Itoda et al. (2003), Kobayashi et al. (2005) 1515delC, F506S TM4 Not determined 0.5 Itoda et al. (2003), Kobayashi et al. (2005) 1515delC, F507L 1515delC, V508L 1515delC, M509X 1711T>A, F571I (rs9282571) TM5 Well expressed, substrate specificity altered 0.5 Tamura et al. (2006) 1723C>T, R575X TM5 Not determined 0.5 Tamura et al. (2006) 1768A>T, N590Y (rs34264773) ECL3 Slightly overexpressed, substrate specificity altered 0-9.7 Tamura et al. (2006), Mizuarai et al. (2004), Zamber et al. (2003), Vethanayagam et al. (2005) 1858G>A, D620 N (rs34783571) ECL3 Slightly overexpressed, substrate specificity altered 0-11.1 Tamura et al. (2006), Bosch et al. (2005), Honjo et al. (2002), Vethanayagam et al. (2005) the trafficking along microtubules (Basseville et al. 2012).
X
ABCG2 p.Arg160Gln 24777822:95:1399
status: NEW