ABCG2 p.Arg482Asn
Predicted by SNAP2: | A: D (91%), C: D (85%), D: D (95%), E: D (95%), F: D (91%), G: D (95%), H: D (95%), I: D (85%), K: D (85%), L: D (91%), M: D (85%), N: D (95%), P: D (95%), Q: D (95%), S: D (91%), T: D (91%), V: D (91%), W: D (95%), Y: D (95%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, G: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Single amino acid substitutions in the transmembra... Int J Cancer. 2003 Dec 10;107(5):757-63. Miwa M, Tsukahara S, Ishikawa E, Asada S, Imai Y, Sugimoto Y
Single amino acid substitutions in the transmembrane domains of breast cancer resistance protein (BCRP) alter cross resistance patterns in transfectants.
Int J Cancer. 2003 Dec 10;107(5):757-63., 2003-12-10 [PMID:14566825]
Abstract [show]
Breast cancer resistance protein (BCRP) is a member of ATP-binding cassette transporters that has an N-terminal ATP binding domain and a C-terminal transmembrane domain (TM). Expression of wild-type BCRP confers resistance to multiple chemotherapeutic agents such as mitoxantrone, SN-38 and topotecan, but not to doxorubicin. We made 32 BCRP mutants with an amino acid substitution in the TMs (7 E446-mutants in TM2, 15 R482-mutants in TM3, 4 N557-mutants in TM5 and 6 H630-mutants in TM6) and examined the effect of the substitutions on cellular drug resistance. PA317 cells transfected with any one of the 7 E446-mutant BCRP cDNAs did not show drug resistance. Cells transfected with any one of the 13 R482X2-BCRP cDNAs (X2 = N, C, M, S, T, V, A, G, E, W, D, Q and H, but not Y and K) showed higher resistance to mitoxantrone and doxorubicin than the wild-type BCRP-transfected cells. Cells transfected with N557D-BCRP cDNA showed similar resistance to mitoxantrone but lower resistance to SN-38 than the wild-type BCRP-transfected cells. Cells transfected with N557E-, H630E- or H630L-BCRP cDNA showed similar degrees of resistance to mitoxantrone and SN-38. Estrone and fumitremorgin C reversed the drug resistance of cells transfected with R482-, N557- or H630-mutant BCRP cDNA. Cells transfected with R482G- or R482S-BCRP cDNA showed less intracellular accumulation of [3H]mitoxantrone than the wild-type BCRP-transfected cells. These results suggest that E446 in TM2, R482 in TM3, N557 in TM5 and H630 in TM6 play important roles in drug recognition of BCRP.
Comments [show]
None has been submitted yet.
No. Sentence Comment
64 PA/R482N, PA/R482C, PA/R482M, PA/R482S, PA/R482T, PA/R482V, PA/R482A, PA/R482G, PA/R482E PA/R482W and PA/R482D (Group 2) showed higher degrees of resistance to mitoxantrone than to SN-38.
X
ABCG2 p.Arg482Asn 14566825:64:3
status: VERIFIED163 Group 2 members (PA/R482N, PA/R482C, PA/R482M, PA/R482S, PA/R482T, PA/R482V, PA/ R482A, PA/R482G, PA/R482E PA/R482W and PA/R482D) showed higher degrees of resistance to mitoxantrone than to SN-38.
X
ABCG2 p.Arg482Asn 14566825:163:20
status: VERIFIED[hide] Single amino acid (482) variants of the ABCG2 mult... Biochim Biophys Acta. 2005 Feb 1;1668(1):53-63. Ozvegy-Laczka C, Koblos G, Sarkadi B, Varadi A
Single amino acid (482) variants of the ABCG2 multidrug transporter: major differences in transport capacity and substrate recognition.
Biochim Biophys Acta. 2005 Feb 1;1668(1):53-63., 2005-02-01 [PMID:15670731]
Abstract [show]
The human ABCG2 protein is an ATP binding cassette half-transporter, which protects our cells and tissues against various xenobiotics, while overexpression of ABCG2 in tumor cells confers multidrug resistance. It has been documented that single amino acid changes at position 482 resulted in altered drug resistance and transport capacity. In this study, we have generated nine Arg-482 mutants (G, I, M, S, T, D, N, K, Y) of ABCG2, and expressed them in insect cells. All ABCG2 variants showed cell surface expression and, in isolated membranes, an ABCG2-specific ATPase activity. When methotrexate accumulation was measured in inside-out membrane vesicles, this transport was supported only by the wild-type ABCG2. In intact cells, mitoxantrone was transported by all ABCG2 variants, except by R482K. Rhodamine 123 was extruded by most of the mutants, except by R482K, Y and by wild-type ABCG2. Hoechst 33342 was pumped out from cells expressing the wild-type and all Arg-482 variants, but not from those expressing R482K and Y. Our study demonstrates that the substrate specificity of the Arg (wild-type) form is unique and that amino acid replacements at position 482 induce major alterations in both the transport activity and substrate specificity of this protein.
Comments [show]
None has been submitted yet.
No. Sentence Comment
48 The two internal complementary primer pairs containing the specific mutation were: 5V-tta tta cca atg atc atg tta cc-3Vand 5-Vgg taa cat gat cat tgg taa taa-3V (R482I), 5V-tta tca gat cta tta ccc atg-3Vand 5V-gg taa cat cat cat ggg taa t-3V(R482M), 5V-ta ccc atg tcg atg tta cca a-3Vand 5V-t tgg taa cat cga cat ggg ta-3V(R482S), 5V-cc atg gac atg tta cca tcg att ata-3V and 5V-tat aat cga tgg taa cat gtc cat gg-3V (R482D), 5V-atg tta cca tcg att ata ttt acc-3Vand 5V-cc atg aat atg tta cca tcg att ata-3V (R482N), 5V-tta tta cct atg aag atg tta-3V cc and 5V-gg taa cat ctt cat agg taa taa-3V(R482K) and 5V-tta tta cct atg tac atg tta cc-3Vand 5V-gg taa cat gta cat agg taa taa-3V (R482Y).
X
ABCG2 p.Arg482Asn 15670731:48:508
status: VERIFIED[hide] Functions of the breast cancer resistance protein ... Adv Drug Deliv Rev. 2009 Jan 31;61(1):26-33. Epub 2008 Dec 3. Noguchi K, Katayama K, Mitsuhashi J, Sugimoto Y
Functions of the breast cancer resistance protein (BCRP/ABCG2) in chemotherapy.
Adv Drug Deliv Rev. 2009 Jan 31;61(1):26-33. Epub 2008 Dec 3., 2009-01-31 [PMID:19111841]
Abstract [show]
The breast cancer resistance protein, BCRP/ABCG2, is a half-molecule ATP-binding cassette transporter that facilitates the efflux of various anticancer agents from the cell, including 7-ethyl-10-hydroxycamptothecin, topotecan and mitoxantrone. The expression of BCRP can thus confer a multidrug resistance phenotype in cancer cells, and its transporter activity is involved in the in vivo efficacy of chemotherapeutic agents. Thus, the elucidation of the substrate preferences and structural relationships of BCRP is essential to understanding its in vivo functions during chemotherapeutic treatments. Single nucleotide polymorphisms (SNPs) have also been found to be key factors in determining the efficacy of chemotherapeutics, and those therapeutics that inhibit BCRP activity, such as the SNP that results in a C421A mutant, may result in unexpected side effects of the BCRP- anticancer drugs interaction even at normal dosages. In order to modulate the BCRP activity during chemotherapy, various compounds have been tested as inhibitors of this protein. Estrogenic compounds including estrone, several tamoxifen derivatives in addition to phytoestrogens and flavonoids have been shown to reverse BCRP-mediated drug resistance. Intriguingly, recently developed molecular targeted cancer drugs, such as the tyrosine kinase inhibitors imatinib mesylate, gefitinib and others, can also interact with BCRP. Since both functional SNPs and inhibitory agents of BCRP modulate the in vivo pharmacokinetics and pharmacodynamics of its substrate drugs, BCRP activity is an important consideration in the development of molecular targeted chemotherapeutics.
Comments [show]
None has been submitted yet.
No. Sentence Comment
837 Furthermore, in a manner similar to that observed in S1-M1-80 and MCF7/AdVp3000 cells, 13 variant BCRPs harboring an amino acid substitution at R482 (R482N, C, M, S, T, V, A, G, E, W, D, Q and H, but not Yor K) conferred strong resistance to doxorubicin and mitoxantrone in PA317 cells.
X
ABCG2 p.Arg482Asn 19111841:837:150
status: NEW