ABCG2 p.Arg482Tyr
Predicted by SNAP2: | A: D (91%), C: D (85%), D: D (95%), E: D (95%), F: D (91%), G: D (95%), H: D (95%), I: D (85%), K: D (85%), L: D (91%), M: D (85%), N: D (95%), P: D (95%), Q: D (95%), S: D (91%), T: D (91%), V: D (91%), W: D (95%), Y: D (95%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, G: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Single amino acid substitutions in the transmembra... Int J Cancer. 2003 Dec 10;107(5):757-63. Miwa M, Tsukahara S, Ishikawa E, Asada S, Imai Y, Sugimoto Y
Single amino acid substitutions in the transmembrane domains of breast cancer resistance protein (BCRP) alter cross resistance patterns in transfectants.
Int J Cancer. 2003 Dec 10;107(5):757-63., 2003-12-10 [PMID:14566825]
Abstract [show]
Breast cancer resistance protein (BCRP) is a member of ATP-binding cassette transporters that has an N-terminal ATP binding domain and a C-terminal transmembrane domain (TM). Expression of wild-type BCRP confers resistance to multiple chemotherapeutic agents such as mitoxantrone, SN-38 and topotecan, but not to doxorubicin. We made 32 BCRP mutants with an amino acid substitution in the TMs (7 E446-mutants in TM2, 15 R482-mutants in TM3, 4 N557-mutants in TM5 and 6 H630-mutants in TM6) and examined the effect of the substitutions on cellular drug resistance. PA317 cells transfected with any one of the 7 E446-mutant BCRP cDNAs did not show drug resistance. Cells transfected with any one of the 13 R482X2-BCRP cDNAs (X2 = N, C, M, S, T, V, A, G, E, W, D, Q and H, but not Y and K) showed higher resistance to mitoxantrone and doxorubicin than the wild-type BCRP-transfected cells. Cells transfected with N557D-BCRP cDNA showed similar resistance to mitoxantrone but lower resistance to SN-38 than the wild-type BCRP-transfected cells. Cells transfected with N557E-, H630E- or H630L-BCRP cDNA showed similar degrees of resistance to mitoxantrone and SN-38. Estrone and fumitremorgin C reversed the drug resistance of cells transfected with R482-, N557- or H630-mutant BCRP cDNA. Cells transfected with R482G- or R482S-BCRP cDNA showed less intracellular accumulation of [3H]mitoxantrone than the wild-type BCRP-transfected cells. These results suggest that E446 in TM2, R482 in TM3, N557 in TM5 and H630 in TM6 play important roles in drug recognition of BCRP.
Comments [show]
None has been submitted yet.
No. Sentence Comment
63 PA/WT2 (R482) and PA/R482Y (Group 1) showed higher degrees of resistance to SN-38 than to mitoxantrone.
X
ABCG2 p.Arg482Tyr 14566825:63:21
status: VERIFIED104 These 13 PA/R482X2 and PA/R482Y cells exhibited significantly greater resistance to doxorubicin than PA/WT2.
X
ABCG2 p.Arg482Tyr 14566825:104:26
status: VERIFIED160 Group 1 member transfectants (PA/WT and PA/R482Y) showed higher degrees of resistance to SN-38 than to mitoxantrone.
X
ABCG2 p.Arg482Tyr 14566825:160:43
status: VERIFIED[hide] Single amino acid (482) variants of the ABCG2 mult... Biochim Biophys Acta. 2005 Feb 1;1668(1):53-63. Ozvegy-Laczka C, Koblos G, Sarkadi B, Varadi A
Single amino acid (482) variants of the ABCG2 multidrug transporter: major differences in transport capacity and substrate recognition.
Biochim Biophys Acta. 2005 Feb 1;1668(1):53-63., 2005-02-01 [PMID:15670731]
Abstract [show]
The human ABCG2 protein is an ATP binding cassette half-transporter, which protects our cells and tissues against various xenobiotics, while overexpression of ABCG2 in tumor cells confers multidrug resistance. It has been documented that single amino acid changes at position 482 resulted in altered drug resistance and transport capacity. In this study, we have generated nine Arg-482 mutants (G, I, M, S, T, D, N, K, Y) of ABCG2, and expressed them in insect cells. All ABCG2 variants showed cell surface expression and, in isolated membranes, an ABCG2-specific ATPase activity. When methotrexate accumulation was measured in inside-out membrane vesicles, this transport was supported only by the wild-type ABCG2. In intact cells, mitoxantrone was transported by all ABCG2 variants, except by R482K. Rhodamine 123 was extruded by most of the mutants, except by R482K, Y and by wild-type ABCG2. Hoechst 33342 was pumped out from cells expressing the wild-type and all Arg-482 variants, but not from those expressing R482K and Y. Our study demonstrates that the substrate specificity of the Arg (wild-type) form is unique and that amino acid replacements at position 482 induce major alterations in both the transport activity and substrate specificity of this protein.
Comments [show]
None has been submitted yet.
No. Sentence Comment
48 The two internal complementary primer pairs containing the specific mutation were: 5V-tta tta cca atg atc atg tta cc-3Vand 5-Vgg taa cat gat cat tgg taa taa-3V (R482I), 5V-tta tca gat cta tta ccc atg-3Vand 5V-gg taa cat cat cat ggg taa t-3V(R482M), 5V-ta ccc atg tcg atg tta cca a-3Vand 5V-t tgg taa cat cga cat ggg ta-3V(R482S), 5V-cc atg gac atg tta cca tcg att ata-3V and 5V-tat aat cga tgg taa cat gtc cat gg-3V (R482D), 5V-atg tta cca tcg att ata ttt acc-3Vand 5V-cc atg aat atg tta cca tcg att ata-3V (R482N), 5V-tta tta cct atg aag atg tta-3V cc and 5V-gg taa cat ctt cat agg taa taa-3V(R482K) and 5V-tta tta cct atg tac atg tta cc-3Vand 5V-gg taa cat gta cat agg taa taa-3V (R482Y).
X
ABCG2 p.Arg482Tyr 15670731:48:683
status: VERIFIED159 We found that while the R482K, R482Y, the wtABCG2, and the inactive K86M mutant had no R123 extrusion activity, several ABCG2 variants were highly active in R123 extrusion.
X
ABCG2 p.Arg482Tyr 15670731:159:31
status: VERIFIED198 While the wtABCG2, the R482K and R482Y mutants are already fully activated, and prazosin either does not affect or reduces the ATPase activity, the other variants can be further stimulated by exogenously added substrates.
X
ABCG2 p.Arg482Tyr 15670731:198:33
status: VERIFIED209 The exceptions were the R482Y mutant, effective only in mitoxantrone transport, and the R482K mutant, showing no transport activity with any of these substrates.
X
ABCG2 p.Arg482Tyr 15670731:209:24
status: VERIFIED216 Actually, the R482K mutant showed no measurable transport activity in any of the assays applied here, while the R482Y was found to be active only in the whole-cell mitoxantrone extrusion assay (see Fig. 4A).
X
ABCG2 p.Arg482Tyr 15670731:216:112
status: VERIFIED226 We found that the R482Y mutant is a very weak mitoxantrone transporter (see Fig. 4A), and Miwa et al. [27] demonstrated that this mutant confers decreased resistance in murine cells against MX.
X
ABCG2 p.Arg482Tyr 15670731:226:18
status: VERIFIED[hide] The nature of amino acid 482 of human ABCG2 affect... Protein Sci. 2006 Jul;15(7):1597-607. Ejendal KF, Diop NK, Schweiger LC, Hrycyna CA
The nature of amino acid 482 of human ABCG2 affects substrate transport and ATP hydrolysis but not substrate binding.
Protein Sci. 2006 Jul;15(7):1597-607., [PMID:16815914]
Abstract [show]
Several members of the ATP-binding cassette (ABC) transporter superfamily, including P-glycoprotein and the half-transporter ABCG2, can confer multidrug resistance to cancer cells in culture by functioning as ATP-dependent efflux pumps. ABCG2 variants harboring a mutation at arginine 482 have been cloned from several drug-resistant cell lines, and these variants differ in their substrate transport phenotype. In this study, we changed the wild-type arginine 482 in human ABCG2 to each one of the 19 other standard amino acids and expressed each one transiently in HeLa cells. Using the 5D3 antibody that recognizes a cell surface epitope of ABCG2, we observed that all the mutants were expressed at the cell surface. However, the mutant ABCG2 proteins differed markedly in transport activity. All of the variants were capable of transporting one or more of the substrates used in this study, with the exception of the R482K mutant, which is completely devoid of transport ability. Six of the mutants (R482G, R482H, R482K, R482P, R482T, and R482Y) and the wild-type protein (R482wt) were selected for studies of basal and stimulated ATPase activity and photoaffinity labeling with the substrate analog [125I]iodoarylazidoprazosin. Whereas these seven ABCG2 variants differed markedly in ATPase activity, all were able to specifically bind the substrate analog [125I]iodoarylazidoprazosin. These data suggest that residue 482 plays an important role in substrate transport and ATP turnover, but that the nature of this amino acid may not be important for substrate recognition and binding.
Comments [show]
None has been submitted yet.
No. Sentence Comment
7 Six of the mutants (R482G, R482H, R482K, R482P, R482T, and R482Y) and the wild-type protein (R482wt) were selected for studies of basal and stimulated ATPase activity and photoaffinity labeling with the substrate analog [125 I]iodoarylazidoprazosin.
X
ABCG2 p.Arg482Tyr 16815914:7:59
status: VERIFIED69 Transport of the fluorescent compound Bodipy FL prazosin followed a similar pattern to that observed for rhodamine 123, where the variants R482wt, R482K, R482H, and R482Y show the least transport (Fig. 3).
X
ABCG2 p.Arg482Tyr 16815914:69:165
status: VERIFIED71 Analysis of the substrate binding properties of wild-type and six mutant ABCG2 proteins In order to further investigate the effects of the R482X mutations, we studied the drug-binding ability of a selection of ABCG2 mutants (R482G, R482H, R482K, R482P, R482T, and R482Y) and the wild-type ABCG2 (R482wt).
X
ABCG2 p.Arg482Tyr 16815914:71:264
status: VERIFIED73 We selected mutants R482H, R482P, and R482Y because they are partially deficient in rhodamine 123 transport, whereas mitoxantrone transport is intact.
X
ABCG2 p.Arg482Tyr 16815914:73:38
status: VERIFIED86 We analyzed expression of ABCG2 in the membranes using the monoclonal antibody BXP-21 (Fig. 5A), which shows that the R482G, R482wt, and R482T membranes used here express less ABCG2, compared with the membranes expressing the R482H, R482K, R482P, and R482Y variants.
X
ABCG2 p.Arg482Tyr 16815914:86:251
status: VERIFIED90 In contrast, the R482H, R482K, R482Y, and R482wt variants are not markedly affected by the addition of 20 mM prazosin.
X
ABCG2 p.Arg482Tyr 16815914:90:31
status: VERIFIED96 Specific [125 I]IAAP photoaffinity labeling of crude membranes derived from HeLa cells expressing wild-type ABCG2 (R482wt) and the ABCG2 variants R482G, R482H, R482K, R482P, R482T, and R482Y.
X
ABCG2 p.Arg482Tyr 16815914:96:185
status: VERIFIED106 Basal and drug-stimulated ATPase activity of wild-type ABCG2 (R482wt) and ABCG2 variants R482G, R482H, R482K, R482P, R482T, and R482Y.
X
ABCG2 p.Arg482Tyr 16815914:106:128
status: VERIFIED139 It has previously been suggested for the R482Y variant that unknown endogenous substrates already fully stimulate the basal activity, which cannot be further stimulated by added exogenous substrates like prazosin (O¨ zvegy-Laczka et al. 2005a).
X
ABCG2 p.Arg482Tyr 16815914:139:41
status: VERIFIED141 Moreover, several variants (R482H, R482K, R482wt, and R482Y) showed no prazosin-stimulated ATPase activity.
X
ABCG2 p.Arg482Tyr 16815914:141:54
status: VERIFIED[hide] Human multidrug resistance ABCB and ABCG transport... Physiol Rev. 2006 Oct;86(4):1179-236. Sarkadi B, Homolya L, Szakacs G, Varadi A
Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system.
Physiol Rev. 2006 Oct;86(4):1179-236., [PMID:17015488]
Abstract [show]
In this review we give an overview of the physiological functions of a group of ATP binding cassette (ABC) transporter proteins, which were discovered, and still referred to, as multidrug resistance (MDR) transporters. Although they indeed play an important role in cancer drug resistance, their major physiological function is to provide general protection against hydrophobic xenobiotics. With a highly conserved structure, membrane topology, and mechanism of action, these essential transporters are preserved throughout all living systems, from bacteria to human. We describe the general structural and mechanistic features of the human MDR-ABC transporters and introduce some of the basic methods that can be applied for the analysis of their expression, function, regulation, and modulation. We treat in detail the biochemistry, cell biology, and physiology of the ABCB1 (MDR1/P-glycoprotein) and the ABCG2 (MXR/BCRP) proteins and describe emerging information related to additional ABCB- and ABCG-type transporters with a potential role in drug and xenobiotic resistance. Throughout this review we demonstrate and emphasize the general network characteristics of the MDR-ABC transporters, functioning at the cellular and physiological tissue barriers. In addition, we suggest that multidrug transporters are essential parts of an innate defense system, the "chemoimmunity" network, which has a number of features reminiscent of classical immunology.
Comments [show]
None has been submitted yet.
No. Sentence Comment
811 Rhodamine-123 was extruded by most of the mutants, except by R482K, R482Y, and the wild-type ABCG2.
X
ABCG2 p.Arg482Tyr 17015488:811:68
status: VERIFIED[hide] Regulation of the function of the human ABCG2 mult... Drug Metab Dispos. 2014 Apr;42(4):575-85. doi: 10.1124/dmd.113.055731. Epub 2014 Jan 2. Telbisz A, Hegedus C, Varadi A, Sarkadi B, Ozvegy-Laczka C
Regulation of the function of the human ABCG2 multidrug transporter by cholesterol and bile acids: effects of mutations in potential substrate and steroid binding sites.
Drug Metab Dispos. 2014 Apr;42(4):575-85. doi: 10.1124/dmd.113.055731. Epub 2014 Jan 2., [PMID:24384916]
Abstract [show]
ABCG2 (ATP-binding cassette, subfamily G, member 2) is a plasma membrane glycoprotein that actively extrudes xenobiotics and endobiotics from the cells and causes multidrug resistance in cancer. In the liver, ABCG2 is expressed in the canalicular membrane of hepatocytes and excretes its substrates into the bile. ABCG2 is known to require high membrane cholesterol content for maximal activity, and by examining purified ABCG2 reconstituted in proteoliposomes we have recently shown that cholesterol is an essential activator, while bile acids significantly modify the activity of this protein. In the present work, by using isolated insect cell membrane preparations expressing human ABCG2 and its mutant variants, we have analyzed whether certain regions in this protein are involved in sterol recognition. We found that replacing ABCG2-R482 with large amino acids does not affect cholesterol dependence, but changes to small amino acids cause altered cholesterol sensitivity. When leucines in the potential steroid-binding element (SBE, aa 555-558) of ABCG2 were replaced by alanines, cholesterol dependence of ABCG2 activity was strongly reduced, although the L558A mutant variant when purified and reconstituted still required cholesterol for full activity. Regarding the effect of bile acids in isolated membranes, we found that these compounds decreased ABCG2-ATPase in the absence of drug substrates, which did not significantly affect substrate-stimulated ATPase activity. These ABCG2 mutant variants also altered bile acid sensitivity, although cholic acid and glycocholate were not transported by the protein. We suggest that the aforementioned two regions in ABCG2 are important for sterol sensing and may represent potential targets for pharmacologic modulation of ABCG2 function.
Comments [show]
None has been submitted yet.
No. Sentence Comment
108 Similar to earlier findings, there was a well-measurable Ko143-sensitive Hst dye transport both in the cells expressing wtABCG2 and in those expressing most R482 mutants, with only very low activity in the case of the R482K and R482Y variants (Fig. 1B).
X
ABCG2 p.Arg482Tyr 24384916:108:228
status: NEW[hide] Determinants of the activity and substrate recogni... Drug Metab Rev. 2014 Nov;46(4):459-74. doi: 10.3109/03602532.2014.942037. Epub 2014 Jul 18. Szafraniec MJ, Szczygiel M, Urbanska K, Fiedor L
Determinants of the activity and substrate recognition of breast cancer resistance protein (ABCG2).
Drug Metab Rev. 2014 Nov;46(4):459-74. doi: 10.3109/03602532.2014.942037. Epub 2014 Jul 18., [PMID:25036722]
Abstract [show]
The xenobiotic transporters are among the most important constituents of detoxification system in living organisms. Breast cancer resistance protein (BCRP/ABCG2) is one of the major transporters involved in the efflux of xenobiotics. To understand its role in chemotherapeutic and multidrug resistance, it is crucial to establish the determinants of its substrate specificity, which obviously is of high relevance for successful therapy of many diseases. This article summarizes the current knowledge about the substrate preferences of BCRP. We overview the factors which determine its activity, inhibition and substrate recognition, focusing on the structural features of the transporter. BCRP substrate specificity is quite low as it interacts with a spectrum of substances with only a few common features: hydrophobic and aromatic regions, possibly a flat conformation and the metal ion-, oxygen- and nitrogen-containing functionalities, most of which may be the donors/acceptors of H-bonds. Several amino acid residues and structural motifs are responsible for BCRP activity and substrate recognition. Thus, the active form of BCRP, at least a dimer or a larger oligomer is maintained by intramolecular disulfide bridge that involves Cys(603) residues. The GXXXG motif in transmembrane helix 1, Cys residues, Arg(482) and Lys(86) are responsible for maintaining the protein structure, which confers transport activity, and the His(457) or Arg(456) residues are directly involved in substrate binding. Arg(482) does not directly bind substrates, but electrostatically interacts with charged molecules, which initiates the conformational changes that transmit the signal from the transmembrane regions to the ABC domain.
Comments [show]
None has been submitted yet.
No. Sentence Comment
172 Rhodamine was effluxed by most of these variants except for Arg482 Lys, Arg482 Tyr and WT protein.
X
ABCG2 p.Arg482Tyr 25036722:172:72
status: NEW173 Arg482 Lys and Arg482 Tyr did not drive out Hoechst 33342 either (O &#a8; zvegy-Laczka et al., 2005).
X
ABCG2 p.Arg482Tyr 25036722:173:15
status: NEW