ABCA4 p.Cys1455Arg
Predicted by SNAP2: | A: N (53%), D: D (71%), E: D (59%), F: D (59%), G: D (71%), H: D (53%), I: D (53%), K: D (66%), L: D (59%), M: D (59%), N: D (63%), P: D (71%), Q: D (66%), R: D (66%), S: D (59%), T: D (53%), V: N (57%), W: D (75%), Y: D (66%), |
Predicted by PROVEAN: | A: D, D: D, E: D, F: D, G: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] A longitudinal study of stargardt disease: clinica... Am J Ophthalmol. 2013 Jun;155(6):1075-1088.e13. doi: 10.1016/j.ajo.2013.01.018. Epub 2013 Mar 15. Fujinami K, Lois N, Davidson AE, Mackay DS, Hogg CR, Stone EM, Tsunoda K, Tsubota K, Bunce C, Robson AG, Moore AT, Webster AR, Holder GE, Michaelides M
A longitudinal study of stargardt disease: clinical and electrophysiologic assessment, progression, and genotype correlations.
Am J Ophthalmol. 2013 Jun;155(6):1075-1088.e13. doi: 10.1016/j.ajo.2013.01.018. Epub 2013 Mar 15., [PMID:23499370]
Abstract [show]
PURPOSE: To investigate the clinical and electrophysiologic natural history of Stargardt disease and correlate with the genotype. DESIGN: Cohort study of 59 patients. METHODS: Clinical history, examination, and electrophysiologic assessment were undertaken in a longitudinal survey. Patients were classified into 3 groups based on electrophysiologic findings, as previously published: Group 1 had dysfunction confined to the macula; Group 2 had macular and generalized cone system dysfunction; and Group 3 had macular and both generalized cone and rod system dysfunction. At baseline, there were 27 patients in Group 1, 17 in Group 2, and 15 in Group 3. Amplitude reduction of >50% in the relevant electroretinogram (ERG) component or a peak time shift of >3 ms for the 30 Hz flicker ERG or bright flash a-wave was considered clinically significant ERG deterioration. Molecular screening of ABCA4 was undertaken. RESULTS: The mean age at baseline was 31.7 years, with the mean follow-up interval being 10.5 years. A total of 22% of patients from Group 1 showed ERG group transition during follow-up, with 11% progressing to Group 2 and 11% to Group 3. Forty-seven percent of patients in Group 2 progressed to Group 3. There was clinically significant ERG deterioration in 54% of all subjects: 22% of Group 1, 65% of Group 2, and 100% of Group 3. At least 1 disease-causing ABCA4 variant was identified in 47 patients. CONCLUSIONS: All patients with initial rod ERG involvement demonstrated clinically significant electrophysiologic deterioration; only 20% of patients with normal full-field ERGs at baseline showed clinically significant progression. Such data assist counseling by providing more accurate prognostic information and are also highly relevant in the design, patient selection, and monitoring of potential therapeutic interventions.
Comments [show]
None has been submitted yet.
No. Sentence Comment
89 Clinical Data and Molecular Genetic Status of 59 Patients With Stargardt Disease Pt Onset (y) Age (y) logMAR VA Variants Identifieda BL FU BL FU 1 16 17 26 0.0/1.0 0.0/0.48 c.768G>T / p.Gly863Ala / p.Arg943Gln 2 15 17 25 0.78/0.78 1.0/1.0 p. Arg1443His 3 11 18 27 0.78/1.0 1.0/1.0 p.Trp439* / p.Gly863Ala / p.Leu1970Phe 4 19 21 32 0.78/0.78 1.0/1.0 p.Leu2027Phe 5 10 22 30 0.48/0.48 1.0/0.78 p.Gly863Ala / p.Arg943Gln / c.5461-10 T>C 6 18 26 37 0.78/1.0 1.0/1.0 p.Pro1380Phe 7 25 28 40 0.78/1.0 1.3/0.78 ND 8 24 29 38 1.0/0.78 1.0/1.0 p.Phe418Ser / p.Leu2027Phe 9 24 31 44 1.0/1.0 1.3/1.0 c.4253&#fe;5 G>T / p.Gly1507Arg 10 26 32 44 0.78/0.78 1.0/1.0 p.Cys1490Tyr / p.Arg2030Gln 11 31 34 46 0.18/0.3 0.6/0.7 ND 12 17 35 47 1.0/1.0 1.0/1.0 p.Asn96His 13 23 35 45 1.0/0.3 1.0/0.48 p.Gly1513Profs*1554 14 33 37 48 0.18/1.48 1.0/1.3 ND 15 38 40 51 0.18/0.78 1.0/1.0 p.Arg2107His 16 42 43 53 0.0/0.0 1.0/1.0 ND 17 22 48 59 1.0/1.0 1.0/1.0 p.Cys54Tyr 18 20 49 59 1.0/0.6 1.0/1.0 p.Pro1380Leu / p.Gly1961Glu 19 35 50 61 1.0/0.3 1.0/1.0 p.Arg1108Cys 20 25 56 67 1.3/0.18 1.0/1.0 p.Trp439* / p.Gly863Ala 21 48 59 71 1.0/0.78 1.0/1.0 p. Ile156 Val / p. Cys1455Arg / p. Phe1839Ser 22 21 22 31 0.3/1.0 1.0/1.0 p.Arg2107His 23 21 23 33 1.0/1.0 1.0/1.0 p.Gly863Ala 24 48 64 73 0.0/1.0 0.18/3.0 p.Tyr1652* 25 17 19 29 0.78/0.3 1.0/1.0 c.5461-10 T>C 26 17 21 33 1.0/0.78 1.0/1.0 ND 27 27 53 66 1.78/1.78 1.3/1.0 p.Ser1071Cysfs*1084 28 5 14 21 0.78/0.78 1.0/1.0 p.Arg408* / p.Val675lle 29 9 15 27 1.08/1.08 1.0/1.0 p.Cys2150Tyr 30 14 24 32 1.0/0.78 1.0/1.0 ND 31 18 28 39 1.0/1.0 1.0/1.0 p.Gly863Ala / p.Arg1108Cys / p.Arg943Gln 32 14 29 37 1.0/1.0 1.0/1.0 p.Arg653Cys / p.Arg2030Gln 33 19 29 40 1.0/1.0 1.0/1.08 ND 34 34 40 49 0.3/0.48 1.0/1.0 p.Gly863Ala / p.Glu1087Lys 35 25 43 54 1.0/1.0 1.0/1.0 p.Cys54Tyr / p.Gly863Ala 36 38 60 69 1.0/1.0 1.3/1.08 p.Val931Met / c.5461-10 T>C 37 10 11 20 1.0/0.78 1.3/1.3 p.Pro1380Leu 38 10 15 23 1.0/1.0 1.3/1.3 p.Ser1071Cysfs*1084 / p.Pro1380Leu 39 24 25 38 1.56/0.3 2.0/2.0 c.5461-10 T>C / c.5714&#fe;5 G>A 40 18 26 36 1.3/1.3 2.0/1.3 ND 41 32 33 45 0.48/0.48 1.0/1.0 ND 42 32 35 46 1.3/0.0 3.0/1.0 p.Cys54Tyr 43 30 35 45 0.48/0.48 2.0/1.3 ND 44 15 41 49 1.3/1.3 2.0/1.3 p.Asn965Ser 45 8 8 20 0.78/0.78 1.0/1.0 p.Thr1019Met 46 10 11 23 1.0/1.0 1.0/1.0 p.Thr1019Met 47 8 12 24 2.0/1.56 1.78/1.48 p.Cys2150Tyr 48 17 18 26 1.0/0.78 1.3/1.0 c.5461-10 T>C / p.Leu2027Phe 49 8 21 33 1.3/1.3 2.0/2.0 p.Asp574Aspfs*582 50 8 27 39 2.0/1.56 1.78/1.48 c.5461-10 T>C 51 24 31 43 1.18/1.18 1.08/1.3 p.Arg1640Trp / p.Leu2027Phe Continued on next page respective electrophysiologic traces appear in Figure 2.
X
ABCA4 p.Cys1455Arg 23499370:89:1143
status: NEW139 p.Cys1455Arg, (5) c.4519G>A, p.Gly1507Arg, and (6) c.5516T>C, p.Phe1839Ser (Supplemental Tables 6 and 7).
X
ABCA4 p.Cys1455Arg 23499370:139:2
status: NEW[hide] Foveal sparing in Stargardt disease. Invest Ophthalmol Vis Sci. 2014 Oct 16;55(11):7467-78. doi: 10.1167/iovs.13-13825. van Huet RA, Bax NM, Westeneng-Van Haaften SC, Muhamad M, Zonneveld-Vrieling MN, Hoefsloot LH, Cremers FP, Boon CJ, Klevering BJ, Hoyng CB
Foveal sparing in Stargardt disease.
Invest Ophthalmol Vis Sci. 2014 Oct 16;55(11):7467-78. doi: 10.1167/iovs.13-13825., [PMID:25324290]
Abstract [show]
PURPOSE: To provide a clinical and genetic description of a patient cohort with Stargardt disease (STGD1) with identifiable foveal sparing. METHODS: Patients with retinal atrophy (defined as an absence of autofluorescence) that surrounded the fovea by at least 180 degrees and did not include the fovea were defined as having foveal sparing; eyes with visual acuity (VA) worse than 20/200 were excluded. We reviewed the medical files and extracted data regarding medical history, VA, ophthalmoscopy, static perimetry, fundus photography, spectral-domain optical coherence tomography (SD-OCT), fluorescein angiography (FA), fundus autofluorescence (FAF), and electroretinography (ERG). We screened each patient's ABCA4 gene for mutations. RESULTS: Seventeen eyes with foveal sparing were identified in 13 unrelated patients. In 4 eyes, the fovea gradually became atrophic after the initial foveal sparing. The mean age at onset was 51 years (range, 32-67 years). Visual acuity was 20/40 or better in all foveal sparing eyes and was 20/25 or better in 41%. Fundus autofluorescence imaging revealed hyperautofluorescent flecks and parafoveal retinal atrophy; SD-OCT revealed sharply delineated atrophy; and perimetry revealed parafoveal scotomas with intact foveal sensitivity. Finally, genetic screening identified mutations in 19 of the 26 ABCA4 gene alleles. CONCLUSIONS: Foveal sparing occurs mainly in patients with late-onset STGD1 and represents the milder end of the clinical spectrum in STGD1. The anatomy, metabolism, and biochemistry of the retina, as well as genetic variations in genes other than ABCA4, can influence the etiology of foveal sparing. Identifying these fovea-protecting factors will facilitate the future development of strategies designed to treat STGD1.
Comments [show]
None has been submitted yet.
No. Sentence Comment
114 ABCA4 Mutations in STGD1 Patients With Foveal Sparing Allele 1 Allele 2 References DNA Variant Effect DNA Variant Effect P1 c.5461-10TC Unknown NI NA 35, 36 P2 c.3113CT p.Ala1038Val c.3874CT p.Gln1292* 16, 37, 38, 58 P3 c.5461-10TC Unknown c.5537TC p.Ile1846Thr 23, 35, 39, 58 P4 c.4363TC p.Cys1455Arg NI NA 40 P5 c.1822TA p.Phe608Ile c.4685TC p.Ile1562Thr 23, 40, 41, 59 P6 c.768GT Splice defect c.3113CT p.Ala1038Val 16, 23, 37 P7 c.5196&#fe;1GT Splice defect NI NA 45, 58 P8 c.3874CT p.Gln1292* NI NA 38 P9 c.5461-10TC Unknown NI NA 35, 58 P10 c.1822TA p.Phe608Ile NI NA 23, 41 P11 c.286AG p.Asn96Asp NI NA 43 P12 c.1805GA p.Arg602Gln c.4462TC p.Cys1488Arg 37, 39, 42-44 P13 c.3874CT p.Gln1292* c.1928TG p.Val643Gly 38, 45 NI, not identified; NA, not applicable.
X
ABCA4 p.Cys1455Arg 25324290:114:297
status: NEW151 ABCA4 Mutations in STGD1 Patients With Foveal Sparing Allele 1 Allele 2 References DNA Variant Effect DNA Variant Effect P1 c.5461-10TC Unknown NI NA 35, 36 P2 c.3113CT p.Ala1038Val c.3874CT p.Gln1292* 16, 37, 38, 58 P3 c.5461-10TC Unknown c.5537TC p.Ile1846Thr 23, 35, 39, 58 P4 c.4363TC p.Cys1455Arg NI NA 40 P5 c.1822TA p.Phe608Ile c.4685TC p.Ile1562Thr 23, 40, 41, 59 P6 c.768GT Splice defect c.3113CT p.Ala1038Val 16, 23, 37 P7 c.5196&#fe;1GT Splice defect NI NA 45, 58 P8 c.3874CT p.Gln1292* NI NA 38 P9 c.5461-10TC Unknown NI NA 35, 58 P10 c.1822TA p.Phe608Ile NI NA 23, 41 P11 c.286AG p.Asn96Asp NI NA 43 P12 c.1805GA p.Arg602Gln c.4462TC p.Cys1488Arg 37, 39, 42-44 P13 c.3874CT p.Gln1292* c.1928TG p.Val643Gly 38, 45 NI, not identified; NA, not applicable.
X
ABCA4 p.Cys1455Arg 25324290:151:297
status: NEW