ABCA4 p.Met2130Lys
Predicted by SNAP2: | A: D (59%), C: N (57%), D: D (71%), E: N (53%), F: N (66%), G: D (75%), H: N (57%), I: N (78%), K: D (53%), L: N (78%), N: D (63%), P: D (66%), Q: N (57%), R: D (59%), S: D (53%), T: N (53%), V: N (72%), W: D (63%), Y: N (61%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, G: D, H: D, I: D, K: D, L: D, N: D, P: D, Q: D, R: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Evaluation of the ELOVL4, PRPH2 and ABCA4 genes in... Mol Med Rep. 2012 Nov;6(5):1045-9. doi: 10.3892/mmr.2012.1063. Epub 2012 Sep 4. Yi J, Li S, Jia X, Xiao X, Wang P, Guo X, Zhang Q
Evaluation of the ELOVL4, PRPH2 and ABCA4 genes in patients with Stargardt macular degeneration.
Mol Med Rep. 2012 Nov;6(5):1045-9. doi: 10.3892/mmr.2012.1063. Epub 2012 Sep 4., [PMID:22948568]
Abstract [show]
Mutations in the ATP-binding cassette, subfamily A, member 4 (ABCA4), elongation of very long chain fatty acids 4 (ELOVL4) and peripherin-2 (PRPH2) genes have been identified in patients with Stargardt macular degeneration (STGD). The aim of this study was to investigate which of these genes is responsible for susceptibility in Chinese patients. A total of 41 probands with STGD or suspected STGD were enrolled in the study. The coding regions and adjacent intronic sequences of the ELOVL4 and PRPH2 genes and 3 coding exons of the ABCA4 gene were amplified by polymerase chain reaction (PCR). The nucleotide sequences of the amplicons were determined by Sanger sequencing. Three novel heterozygous missense mutations in the ABCA4 gene were identified: c:2633C>A (p:Ser878X), c:5646G>A (p:Met1882Ile) and c:6389T>A (p:Met2130Lys). These mutations were not present in 176 normal individuals and were predicted to be pathogenic. Two benign variations were found: a reported variation, c:5682G>C in ABCA4 and a novel variation, c:699G>A in ELOVL4. In addition, 5 single nucleotide polymorphisms (SNPs: rs3812153, rs7764439, rs390659, rs434102 and c:929G>A) were detected in ELOVL4 and PRPH2. The c:929G>A variation has not been previously reported. We conclude that no pathogenic variations in ELOVL4 and PRPH2 were detected in the Chinese STGD patients. Our results imply that ABCA4 is more likely to be significant in Chinese STGD patients.
Comments [show]
None has been submitted yet.
No. Sentence Comment
67 Best corrected Mutations visual acuity ID -------------------------------------------------- Age at First ---------------------------- Posterior Number ccds pro Gender onset symptom OD OS Macula retina QT223 2633C>A Ser878X M 19 Blurred 0.1 0.1 Foveal reflex was Yellow and vision blunted white exudation QT292 6389T>A Met2130Lys M >10 Blurred 0.1 0.2 Pigmental Normal vision proliferation.
X
ABCA4 p.Met2130Lys 22948568:67:354
status: NEW70 lipofuscin deposits in the posterior pole of the retina, while the patient with Met2130Lys presented with a macula having a bronze metal appearance.
X
ABCA4 p.Met2130Lys 22948568:70:80
status: NEW[hide] Identification of Genetic Defects in 33 Probands w... PLoS One. 2015 Jul 10;10(7):e0132635. doi: 10.1371/journal.pone.0132635. eCollection 2015. Xin W, Xiao X, Li S, Jia X, Guo X, Zhang Q
Identification of Genetic Defects in 33 Probands with Stargardt Disease by WES-Based Bioinformatics Gene Panel Analysis.
PLoS One. 2015 Jul 10;10(7):e0132635. doi: 10.1371/journal.pone.0132635. eCollection 2015., [PMID:26161775]
Abstract [show]
Stargardt disease (STGD) is the most common hereditary macular degeneration in juveniles, with loss of central vision occurring in the first or second decade of life. The aim of this study is to identify the genetic defects in 33 probands with Stargardt disease. Clinical data and genomic DNA were collected from 33 probands from unrelated families with STGD. Variants in coding genes were initially screened by whole exome sequencing. Candidate variants were selected from all known genes associated with hereditary retinal dystrophy and then confirmed by Sanger sequencing. Putative pathogenic variants were further validated in available family members and controls. Potential pathogenic mutations were identified in 19 of the 33 probands (57.6%). These mutations were all present in ABCA4, but not in the other four STGD-associated genes or in genes responsible for other retinal dystrophies. Of the 19 probands, ABCA4 mutations were homozygous in one proband and compound heterozygous in 18 probands, involving 28 variants (13 novel and 15 known). Analysis of normal controls and available family members in 12 of the 19 families further support the pathogenicity of these variants. Clinical manifestation of all probands met the diagnostic criteria of STGD. This study provides an overview of a genetic basis for STGD in Chinese patients. Mutations in ABCA4 are the most common cause of STGD in this cohort. Genetic defects in approximately 42.4% of STGD patients await identification in future studies.
Comments [show]
None has been submitted yet.
No. Sentence Comment
68 Patient Nucleotide Amino Acid State Computational Prediction Allele Frequency in Reported ID Change Change P/SS Proven SIFT 1000G EVS ExAC NC RC QT058 c.6173T>G p.L2058R Het PrD D D NA NA NA 0/192 0/456 Novel c.4773 +1G>T Splicing defect Het SSA NA NA NA NA NA - 0/456 Pang et al. 2002; Riveiro-Alvarez et al. 2013 QT085 c.6173T>G p.L2058R Het PrD D D NA NA NA 0/192 0/456 Novel c.5932delA p. K1978Qfs*13 Het NA NA NA NA NA NA 0/192 0/456 Novel QT292 c.6389T>A p.M2130K Het PoD D D NA NA NA - 0/456 Yi et al. 2012 c.6118C>T p.R2040* Het NA NA NA NA NA 2/121394 0/192 0/456 Baum et al. 2003 QT302 c.6816 +1G>A Splicing defect Het SSA NA NA NA NA NA - 0/456 Robert et al. 2014 c.4555delA p.T1519Rfs*7 Het NA NA NA NA NA NA 0/192 0/456 Novel QT398 c.4352 +1G>A Splicing defect Het SSA NA NA NA NA 1/121268 - 0/456 Ernest et al. 2009 c.1804C>T p.R602W Het PoD D D NA NA 6/119038 - 2/456 Lewis et al. 1999; Wiszniewski et al. 2005; Heathfield et al. 2013 QT431 c.5646G>A p.M1882I Het PoD D D NA NA 3/121340 - 0/456 Zernant et al. 2011 c.1804C>T p.R602W Het B D D NA NA 6/119038 - 2/456 Lewis et al. 1999; Wiszniewski et al. 2005; Heathfield et al. 2013 QT458 c.4555delA p.T1519Rfs*7 Het NA NA NA NA NA NA 0/192 0/456 Novel c.164A>G p.H55R Het PoD D D NA NA NA - 0/456 Thiadens et al. 2012 QT727 c.161-2A>G Splicing defect Het SSA NA NA NA NA NA 0/192 0/456 Novel c.101_106del p.S34_L35del Het NA NA NA NA NA NA 0/192 0/456 Novel QT833 c.2424C>G p.Y808* Het NA NA NA NA NA NA - 0/456 Zhou et al. 2014 c.1560delG p.V521Sfs*47 Het NA NA NA NA NA NA 0/192 0/456 Novel QT1137 c.6284A>T p.D2095V Het PrD D D NA NA NA 0/192 0/456 Novel c.22C>T p.Q8* Het NA NA NA NA 0.0001 NA 0/192 0/456 Novel QT1160 c.240_241del p.C81Ffs*17 Het NA NA NA NA NA NA 0/192 0/456 Novel c.101_106del p.S34_L35del Het NA NA NA NA NA NA 0/192 0/456 Novel QT1175 c.4195G>T p.E1399* Het NA NA NA NA NA 2/120596 0/192 0/456 Novel c.2894A>G p.N965S Het PrD D D NA 0.0001 21/ 121302 - 0/456 Allikmets et al. 1997; Shanks et al. 2013; Bertelsen et al. 2014 QT1182 c.4773 +1G>T Splicing defect Hom SSA NA NA NA NA NA - 0/456 Pang et al. 2002; Riveiro-Alvarez et al. 2013 QT1198 c.5646G>A p.M1882I Het B D D NA NA 3/121340 - 0/456 Zernant et al. 2011 c.2894A>G p.N965S Het PrD D D NA 0.0001 21/ 121302 - 0/456 Allikmets et al. 1997;Shanks et al. 2013; Bertelsen et al. 2014 QT1200 c.6563T>C p.F2188S Het B D D NA 0.0005 2/121380 - 1/456 Fukui et al. 2002 c.858+2T>A Splicing defect Het SSA NA NA NA NA NA - 0/456 Zhang et al. 2014 QT1230 c.6317G>C p.R2106P Het PrD D D NA NA NA 0/192 0/456 Novel c.101_106del p.S34_L35del Het NA NA NA NA NA NA 0/192 0/456 Novel QT1277 c.6479 +2T>C Splicing defect Het SSA NA NA NA NA NA 0/192 0/456 Novel (Continued) Table 1.
X
ABCA4 p.Met2130Lys 26161775:68:463
status: NEW