ABCA4 p.Phe418Ser
ClinVar: |
c.1253T>C
,
p.Phe418Ser
?
, Uncertain significance
|
Predicted by SNAP2: | A: D (66%), C: N (57%), D: D (80%), E: D (63%), G: D (80%), H: D (59%), I: N (66%), K: D (63%), L: N (61%), M: N (66%), N: D (71%), P: D (75%), Q: D (59%), R: D (59%), S: D (66%), T: D (63%), V: N (53%), W: N (53%), Y: N (72%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, G: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: D, T: D, V: D, W: D, Y: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Analysis of the ABCA4 gene by next-generation sequ... Invest Ophthalmol Vis Sci. 2011 Oct 31;52(11):8479-87. doi: 10.1167/iovs.11-8182. Zernant J, Schubert C, Im KM, Burke T, Brown CM, Fishman GA, Tsang SH, Gouras P, Dean M, Allikmets R
Analysis of the ABCA4 gene by next-generation sequencing.
Invest Ophthalmol Vis Sci. 2011 Oct 31;52(11):8479-87. doi: 10.1167/iovs.11-8182., [PMID:21911583]
Abstract [show]
PURPOSE: To find all possible disease-associated variants in coding sequences of the ABCA4 gene in a large cohort of patients diagnosed with ABCA4-associated diseases. METHODS: One hundred sixty-eight patients who had been clinically diagnosed with Stargardt disease, cone-rod dystrophy, and other ABCA4-associated phenotypes were prescreened for mutations in ABCA4 with the ABCA4 microarray, resulting in finding 1 of 2 expected mutations in 111 patients and 0 of 2 mutations in 57 patients. The next-generation sequencing (NGS) strategy was applied to these patients to sequence the entire coding region and the splice sites of the ABCA4 gene. Identified new variants were confirmed or rejected by Sanger sequencing and analyzed for possible pathogenicity by in silico programs and, where possible, by segregation analyses. RESULTS: Sequencing was successful in 159 of 168 patients and identified the second disease-associated allele in 49 of 103 (~48%) of patients with one previously identified mutation. Among those with no mutations, both disease-associated alleles were detected in 4 of 56 patients, and one mutation was detected in 10 of 56 patients. The authors detected a total of 57 previously unknown, possibly pathogenic, variants: 29 missense, 4 nonsense, 9 small deletions and 15 splice-site-altering variants. Of these, 55 variants were deemed pathogenic by a combination of predictive methods and segregation analyses. CONCLUSIONS: Many mutations in the coding sequences of the ABCA4 gene are still unknown, and many possibly reside in noncoding regions of the ABCA4 locus. Although the ABCA4 array remains a good first-pass screening option, the NGS platform is a time- and cost-efficient tool for screening large cohorts.
Comments [show]
None has been submitted yet.
No. Sentence Comment
120 Novel Variants Detected by NGS in the ABCA4 Gene and Results of Analysis Using Bioinformatics Software Nucleotide Change Protein Splicing Score Original Splicing Score for New Variant Average Difference Polyphen SIFT SpliceSite Finder-like Gene Splicer SpliceSite Finder-like Gene Splicer c.91Tb0e;C p.W31R 0 0 0 0 0 Probably damaging (0.999) W c.184Cb0e;T p.P62S 0 0 0 0 0 Probably damaging (0.999) P c.770Tb0e;G p.L257R 0 0 0 0 0 Possibly damaging (0.308) m i F L c.1253Tb0e;C p.F418S 0 0 0 0 0 Probably damaging (0.999) F c.1531Cb0e;T p.R511C 0 0 0 0 0 Probably damaging (1.000) R c.1745Ab0e;G p.N582S 0 0 0.74 0.82 77.8 Probably damaging (0.894) d K N c.1868Ab0e;G p.Q623R 0 0.24 0 0 12.1 Probably damaging (0.937) Q c.1964Tb0e;G p.F655C 0 0 0 0 0 Probably damaging (0.999) F c.1977Gb0e;A p.M659I 0 0 0.75 0.85 79.8 Probably damaging (0.999) M c.2243Gb0e;A p.C748Y 0 0 0 0 0 Probably damaging (0.928) g S A C c.2401Gb0e;A p.A801T 0 0 0 0 0 Probably damaging (0.98) A c.2893Ab0e;T p.N965Y 0 0 0 0 0 Probably damaging (0.999) N c.3148Gb0e;A p.G1050S 0 0 0 0 0 Possibly damaging (0.786) G c.3205Ab0e;G p.K1069E 0 0 0 0 0 Probably damaging (0.993) K c.3279Cb0e;A p.D1093E 0 0 0 0 0 Probably damaging (0.99) D c.3350Cb0e;T p.T1117I 0 0 0 0 0 Probably damaging (0.995) T c.3655Gb0e;C p.A1219P 0.77 0 0.74 0 1.5 Probably damaging (0.991) A c.3812Ab0e;G p.E1271G 0.8 0.35 0.71 0 21.8 Probably damaging (0.995) E c.4177Gb0e;A p.V1393I 0 0 0 0 0 Benign (0.000) VI c.4217Ab0e;G p.H1406R 0 0 0 0 0 Probably damaging (0.986) r p q a t k e g n S D H c.4248Cb0e;A p.F1416L 0.79 0.1 0.79 0.1 0.27 Probably damaging (0.891) F c.4326Cb0e;A p.N1442K 0 0 0 0 0 Possibly damaging (0.374) a g d s T N c.4467Gb0e;T p.R1489S 0.85 0.43 0.78 0.24 12.8 Benign (0.047) p h l s n a e T Q K R c.4670Ab0e;G p.Y1557C 0.85 0.13 0.80 0 8.8 Probably damaging (0.999) f W Y c.5138Ab0e;G p.Q1713R 0 0 0 0 0 Probably damaging (0.997) Q c.5177Cb0e;A p.T1726N 0 0 0 0 0 Probably damaging (0.880) s A T c.5646Gb0e;A p.M1882I 0 0 0.75 0 37.4 Probably damaging (0.999) M c.6306Cb0e;A p.D2102E 0 0 0 0 0 Probably damaging (0.99) D c.6718Ab0e;G p.T2240A 0 0 0 0 0 Probably damaging (0.991) T c.160af9;2Tb0e;C 0.81 0.86 0.79 0 44.4 c.1240afa;2Ab0e;G 0.82 0.81 0 0 81.5 c.2382af9;1Gb0e;A 0.79 0.64 0 0 71.7 c.2919afa;2Ab0e;G 0.9 0.92 0 0 90.9 c.3522af9;5delG 0.87 0.57 0 0.18 63 c.3523afa;1Gb0e;A 0.9 0.89 0 0 89 Splice site shift of 1 bp c.3814afa;2Ab0e;G 0.91 0.9 0 0 90.6 c.4352af9;1Gb0e;A 0.74 0.82 0 0 78 c.4635afa;1Gb0e;T 0.86 0.89 0 0 87.5 New splice site 7 bp downstream c.5312af9;1Gb0e;A 0.81 0.91 0 0 86.1 c.5836afa;2Ab0e;C 0.89 0.87 0 0 88 c.6387afa;1Gb0e;T 0.77 0.87 0 0 82 c.6479af9;1Gb0e;A 0.82 0.87 0 0 85 c.6479af9;1Gb0e;C 0.82 0.31 0 0 56.6 c.1100afa;6Tb0e;A 0 0 0.9 0.93 91.6 Creates new splice site c.351_352delAG p.S119fs Frameshift c.564delA p.E189Cfs Frameshift c.885delC p.L296Cfs Frameshift c.1374delA p.T459Qfs Frameshift c.3543delT p.K1182Rfs Frameshift c.3846delA p.G1283Dfs Frameshift c.4734delG p.L1580* Stop codon c.5932delA p.T1979Qfs Frameshift c.6317_6323del p.R2107_ GCCGCAT M2108delfs Frameshift c.121Gb0e;A p.W41* Stop codon c.318Tb0e;G p.Y106* Stop codon c.1906Cb0e;T p.Q636* Stop codon c.4639Ab0e;T p.K1547* Stop codon For SpliceSiteFinder and GeneSplicer, 1 is the highest score for splice site activity and 0 is the lowest.
X
ABCA4 p.Phe418Ser 21911583:120:493
status: NEW[hide] Detection rate of pathogenic mutations in ABCA4 us... Arch Ophthalmol. 2012 Nov;130(11):1486-90. doi: 10.1001/archophthalmol.2012.1697. Downes SM, Packham E, Cranston T, Clouston P, Seller A, Nemeth AH
Detection rate of pathogenic mutations in ABCA4 using direct sequencing: clinical and research implications.
Arch Ophthalmol. 2012 Nov;130(11):1486-90. doi: 10.1001/archophthalmol.2012.1697., [PMID:23143460]
Abstract [show]
Comments [show]
None has been submitted yet.
No. Sentence Comment
30 In 3 of the 6 patients with a historical diagnosis Table. Results From Direct Sequencing of the ABCA4 Gene in 50 Patients (continued) Subject No. Change 1 Change 2 Phase Segregation Age at Onset, y Phenotype Grade, Macula Flecks/ Cones/Rodsa Additional Variants Conclusion Nucleotide Amino Acid Nucleotide Amino Acid 11 4139Cb0e;T P1380L 5714 af9; 5Gb0e;A Splice NK NK 19 STGD m/0/0 0 2 PVs 12 4457Cb0e;T P1486L 4457Cb0e;T P1486L In trans Unaffected sibling carries 1 mutation 25 STGD maf9;af9;/1/1 0 2 PVs 13 4537dupC Q1513fs 6391Gb0e;A E2131K In trans Unaffected parents carriers 10 STGD maf9;/0/0 R152Q in cis with Q1513fs, E2131K in cis with E471K 2 PVs 14 6079Cb0e;T L2027F 6079Cb0e;T L2027F In trans Unaffected sibling carrier 28 STGD maf9;af9;/0/0 0 2 PVs 15 5018 af9; 2Tb0e;C NA 6316Cb0e;T R2106C In trans Affected sibling with same mutations 17 STGD m/0/1 0 2 PVs 16 3004Cb0e;T R1002Wb 1957Cb0e;T R653C In trans NK 16 STGD m/0/1 0 2 PVs 17 1253Tb0e;C F418S 2588Gb0e;C G863A NK NK 52 STGD maf9;/0/0 0 2 PVs 18 6709Ab0e;C T2237Pb 3064Gb0e;A E1022K In trans 2 Affected siblings with same mutations 6 STGD maf9;af9;/0/0 0 2 PVs 19 5260Tb0e;G Y1754D 4469Gb0e;A C1490Y In trans NK 12 STGD maf9;af9;/0/0 0 2 PVs 20 551Cb0e;T S184Fb 4793Cb0e;A A1598D NK 2 Affected siblings with same mutations 58 STGD m/NP/NP 0 2 PVs 21 550-551TCb0e;CG S184Rb 5882Gb0e;A G1961E In trans Affected sibling with same mutations 25 STGD maf9;af9;/0/0 0 2 PVs 22 5313-3Cb0e;G Spliceb 5882Gb0e;A G1961E In trans Unaffected parents carriers 47 STGD m/0/1 0 2 PVs 23 2588Gb0e;C G863A 5461-10Tb0e;C Disease-associated allele, unknown mechanism In trans NA 26 STGD maf9;af9;/3/1 1 In cis with G863A 2 PVs 24 5537Tb0e;C I1846T 5461-10Tb0e;C Disease-associated allele, unknown mechanism In trans Unaffected son carries I1846T only 17 STGD maf9;af9;/3/3 0 2 PVs 25 6089Gb0e;A R2030Q 5461-10Tb0e;C Disease-associated allele, unknown mechanism In trans Unaffected sibling carries R2030Q 4 STGD m/NP/NP 0 2 PVs 26 6730-1Gb0e;C Spliceb 2588Gb0e;C G863A NK NK 15 STGD NP/NP/NP 0 2 PVs 27 3291Ab0e;T R1097Sb 3056Cb0e;T T1019M In trans NK 9 STGD NP/NP/NP 1 In cis with R1097S 2 PVs 28 498delT L167HisfsX2b Not present NA NA NK 28 STGD m/1/1 0 1 PV 29 2345Gb0e;A W782Xb Not present NA NA Unaffected mother carries mutation 25 STGD m/1/1 0 1 PV 30 2588Gb0e;C G863A 4326Cb0e;A N1442K NK NK 36 STGD maf9;/0/0 0 1 PV af9; N1442K (unlikely) 31 2966Tb0e;C V989A Not present NA NA NK 49 STGD m/1/1 0 1 PV (continued) ARCH OPHTHALMOL/VOL 130 (NO. 11), NOV 2012 WWW.ARCHOPHTHALMOL.COM 1487 (c)2012 American Medical Association. All rights reserved. Downloaded From: http://archopht.jamanetwork.com/ by a Semmelweis University Budapest User on 12/06/2015 lopathy is genetically heterogeneous. A total of 10 novel mutations were identified (Table).
X
ABCA4 p.Phe418Ser 23143460:30:1017
status: NEW[hide] A longitudinal study of stargardt disease: clinica... Am J Ophthalmol. 2013 Jun;155(6):1075-1088.e13. doi: 10.1016/j.ajo.2013.01.018. Epub 2013 Mar 15. Fujinami K, Lois N, Davidson AE, Mackay DS, Hogg CR, Stone EM, Tsunoda K, Tsubota K, Bunce C, Robson AG, Moore AT, Webster AR, Holder GE, Michaelides M
A longitudinal study of stargardt disease: clinical and electrophysiologic assessment, progression, and genotype correlations.
Am J Ophthalmol. 2013 Jun;155(6):1075-1088.e13. doi: 10.1016/j.ajo.2013.01.018. Epub 2013 Mar 15., [PMID:23499370]
Abstract [show]
PURPOSE: To investigate the clinical and electrophysiologic natural history of Stargardt disease and correlate with the genotype. DESIGN: Cohort study of 59 patients. METHODS: Clinical history, examination, and electrophysiologic assessment were undertaken in a longitudinal survey. Patients were classified into 3 groups based on electrophysiologic findings, as previously published: Group 1 had dysfunction confined to the macula; Group 2 had macular and generalized cone system dysfunction; and Group 3 had macular and both generalized cone and rod system dysfunction. At baseline, there were 27 patients in Group 1, 17 in Group 2, and 15 in Group 3. Amplitude reduction of >50% in the relevant electroretinogram (ERG) component or a peak time shift of >3 ms for the 30 Hz flicker ERG or bright flash a-wave was considered clinically significant ERG deterioration. Molecular screening of ABCA4 was undertaken. RESULTS: The mean age at baseline was 31.7 years, with the mean follow-up interval being 10.5 years. A total of 22% of patients from Group 1 showed ERG group transition during follow-up, with 11% progressing to Group 2 and 11% to Group 3. Forty-seven percent of patients in Group 2 progressed to Group 3. There was clinically significant ERG deterioration in 54% of all subjects: 22% of Group 1, 65% of Group 2, and 100% of Group 3. At least 1 disease-causing ABCA4 variant was identified in 47 patients. CONCLUSIONS: All patients with initial rod ERG involvement demonstrated clinically significant electrophysiologic deterioration; only 20% of patients with normal full-field ERGs at baseline showed clinically significant progression. Such data assist counseling by providing more accurate prognostic information and are also highly relevant in the design, patient selection, and monitoring of potential therapeutic interventions.
Comments [show]
None has been submitted yet.
No. Sentence Comment
89 Clinical Data and Molecular Genetic Status of 59 Patients With Stargardt Disease Pt Onset (y) Age (y) logMAR VA Variants Identifieda BL FU BL FU 1 16 17 26 0.0/1.0 0.0/0.48 c.768G>T / p.Gly863Ala / p.Arg943Gln 2 15 17 25 0.78/0.78 1.0/1.0 p. Arg1443His 3 11 18 27 0.78/1.0 1.0/1.0 p.Trp439* / p.Gly863Ala / p.Leu1970Phe 4 19 21 32 0.78/0.78 1.0/1.0 p.Leu2027Phe 5 10 22 30 0.48/0.48 1.0/0.78 p.Gly863Ala / p.Arg943Gln / c.5461-10 T>C 6 18 26 37 0.78/1.0 1.0/1.0 p.Pro1380Phe 7 25 28 40 0.78/1.0 1.3/0.78 ND 8 24 29 38 1.0/0.78 1.0/1.0 p.Phe418Ser / p.Leu2027Phe 9 24 31 44 1.0/1.0 1.3/1.0 c.4253&#fe;5 G>T / p.Gly1507Arg 10 26 32 44 0.78/0.78 1.0/1.0 p.Cys1490Tyr / p.Arg2030Gln 11 31 34 46 0.18/0.3 0.6/0.7 ND 12 17 35 47 1.0/1.0 1.0/1.0 p.Asn96His 13 23 35 45 1.0/0.3 1.0/0.48 p.Gly1513Profs*1554 14 33 37 48 0.18/1.48 1.0/1.3 ND 15 38 40 51 0.18/0.78 1.0/1.0 p.Arg2107His 16 42 43 53 0.0/0.0 1.0/1.0 ND 17 22 48 59 1.0/1.0 1.0/1.0 p.Cys54Tyr 18 20 49 59 1.0/0.6 1.0/1.0 p.Pro1380Leu / p.Gly1961Glu 19 35 50 61 1.0/0.3 1.0/1.0 p.Arg1108Cys 20 25 56 67 1.3/0.18 1.0/1.0 p.Trp439* / p.Gly863Ala 21 48 59 71 1.0/0.78 1.0/1.0 p. Ile156 Val / p. Cys1455Arg / p. Phe1839Ser 22 21 22 31 0.3/1.0 1.0/1.0 p.Arg2107His 23 21 23 33 1.0/1.0 1.0/1.0 p.Gly863Ala 24 48 64 73 0.0/1.0 0.18/3.0 p.Tyr1652* 25 17 19 29 0.78/0.3 1.0/1.0 c.5461-10 T>C 26 17 21 33 1.0/0.78 1.0/1.0 ND 27 27 53 66 1.78/1.78 1.3/1.0 p.Ser1071Cysfs*1084 28 5 14 21 0.78/0.78 1.0/1.0 p.Arg408* / p.Val675lle 29 9 15 27 1.08/1.08 1.0/1.0 p.Cys2150Tyr 30 14 24 32 1.0/0.78 1.0/1.0 ND 31 18 28 39 1.0/1.0 1.0/1.0 p.Gly863Ala / p.Arg1108Cys / p.Arg943Gln 32 14 29 37 1.0/1.0 1.0/1.0 p.Arg653Cys / p.Arg2030Gln 33 19 29 40 1.0/1.0 1.0/1.08 ND 34 34 40 49 0.3/0.48 1.0/1.0 p.Gly863Ala / p.Glu1087Lys 35 25 43 54 1.0/1.0 1.0/1.0 p.Cys54Tyr / p.Gly863Ala 36 38 60 69 1.0/1.0 1.3/1.08 p.Val931Met / c.5461-10 T>C 37 10 11 20 1.0/0.78 1.3/1.3 p.Pro1380Leu 38 10 15 23 1.0/1.0 1.3/1.3 p.Ser1071Cysfs*1084 / p.Pro1380Leu 39 24 25 38 1.56/0.3 2.0/2.0 c.5461-10 T>C / c.5714&#fe;5 G>A 40 18 26 36 1.3/1.3 2.0/1.3 ND 41 32 33 45 0.48/0.48 1.0/1.0 ND 42 32 35 46 1.3/0.0 3.0/1.0 p.Cys54Tyr 43 30 35 45 0.48/0.48 2.0/1.3 ND 44 15 41 49 1.3/1.3 2.0/1.3 p.Asn965Ser 45 8 8 20 0.78/0.78 1.0/1.0 p.Thr1019Met 46 10 11 23 1.0/1.0 1.0/1.0 p.Thr1019Met 47 8 12 24 2.0/1.56 1.78/1.48 p.Cys2150Tyr 48 17 18 26 1.0/0.78 1.3/1.0 c.5461-10 T>C / p.Leu2027Phe 49 8 21 33 1.3/1.3 2.0/2.0 p.Asp574Aspfs*582 50 8 27 39 2.0/1.56 1.78/1.48 c.5461-10 T>C 51 24 31 43 1.18/1.18 1.08/1.3 p.Arg1640Trp / p.Leu2027Phe Continued on next page respective electrophysiologic traces appear in Figure 2.
X
ABCA4 p.Phe418Ser 23499370:89:537
status: NEW