ABCA4 p.Lys1547*
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Analysis of the ABCA4 gene by next-generation sequ... Invest Ophthalmol Vis Sci. 2011 Oct 31;52(11):8479-87. doi: 10.1167/iovs.11-8182. Zernant J, Schubert C, Im KM, Burke T, Brown CM, Fishman GA, Tsang SH, Gouras P, Dean M, Allikmets R
Analysis of the ABCA4 gene by next-generation sequencing.
Invest Ophthalmol Vis Sci. 2011 Oct 31;52(11):8479-87. doi: 10.1167/iovs.11-8182., [PMID:21911583]
Abstract [show]
PURPOSE: To find all possible disease-associated variants in coding sequences of the ABCA4 gene in a large cohort of patients diagnosed with ABCA4-associated diseases. METHODS: One hundred sixty-eight patients who had been clinically diagnosed with Stargardt disease, cone-rod dystrophy, and other ABCA4-associated phenotypes were prescreened for mutations in ABCA4 with the ABCA4 microarray, resulting in finding 1 of 2 expected mutations in 111 patients and 0 of 2 mutations in 57 patients. The next-generation sequencing (NGS) strategy was applied to these patients to sequence the entire coding region and the splice sites of the ABCA4 gene. Identified new variants were confirmed or rejected by Sanger sequencing and analyzed for possible pathogenicity by in silico programs and, where possible, by segregation analyses. RESULTS: Sequencing was successful in 159 of 168 patients and identified the second disease-associated allele in 49 of 103 (~48%) of patients with one previously identified mutation. Among those with no mutations, both disease-associated alleles were detected in 4 of 56 patients, and one mutation was detected in 10 of 56 patients. The authors detected a total of 57 previously unknown, possibly pathogenic, variants: 29 missense, 4 nonsense, 9 small deletions and 15 splice-site-altering variants. Of these, 55 variants were deemed pathogenic by a combination of predictive methods and segregation analyses. CONCLUSIONS: Many mutations in the coding sequences of the ABCA4 gene are still unknown, and many possibly reside in noncoding regions of the ABCA4 locus. Although the ABCA4 array remains a good first-pass screening option, the NGS platform is a time- and cost-efficient tool for screening large cohorts.
Comments [show]
None has been submitted yet.
No. Sentence Comment
120 Novel Variants Detected by NGS in the ABCA4 Gene and Results of Analysis Using Bioinformatics Software Nucleotide Change Protein Splicing Score Original Splicing Score for New Variant Average Difference Polyphen SIFT SpliceSite Finder-like Gene Splicer SpliceSite Finder-like Gene Splicer c.91Tb0e;C p.W31R 0 0 0 0 0 Probably damaging (0.999) W c.184Cb0e;T p.P62S 0 0 0 0 0 Probably damaging (0.999) P c.770Tb0e;G p.L257R 0 0 0 0 0 Possibly damaging (0.308) m i F L c.1253Tb0e;C p.F418S 0 0 0 0 0 Probably damaging (0.999) F c.1531Cb0e;T p.R511C 0 0 0 0 0 Probably damaging (1.000) R c.1745Ab0e;G p.N582S 0 0 0.74 0.82 77.8 Probably damaging (0.894) d K N c.1868Ab0e;G p.Q623R 0 0.24 0 0 12.1 Probably damaging (0.937) Q c.1964Tb0e;G p.F655C 0 0 0 0 0 Probably damaging (0.999) F c.1977Gb0e;A p.M659I 0 0 0.75 0.85 79.8 Probably damaging (0.999) M c.2243Gb0e;A p.C748Y 0 0 0 0 0 Probably damaging (0.928) g S A C c.2401Gb0e;A p.A801T 0 0 0 0 0 Probably damaging (0.98) A c.2893Ab0e;T p.N965Y 0 0 0 0 0 Probably damaging (0.999) N c.3148Gb0e;A p.G1050S 0 0 0 0 0 Possibly damaging (0.786) G c.3205Ab0e;G p.K1069E 0 0 0 0 0 Probably damaging (0.993) K c.3279Cb0e;A p.D1093E 0 0 0 0 0 Probably damaging (0.99) D c.3350Cb0e;T p.T1117I 0 0 0 0 0 Probably damaging (0.995) T c.3655Gb0e;C p.A1219P 0.77 0 0.74 0 1.5 Probably damaging (0.991) A c.3812Ab0e;G p.E1271G 0.8 0.35 0.71 0 21.8 Probably damaging (0.995) E c.4177Gb0e;A p.V1393I 0 0 0 0 0 Benign (0.000) VI c.4217Ab0e;G p.H1406R 0 0 0 0 0 Probably damaging (0.986) r p q a t k e g n S D H c.4248Cb0e;A p.F1416L 0.79 0.1 0.79 0.1 0.27 Probably damaging (0.891) F c.4326Cb0e;A p.N1442K 0 0 0 0 0 Possibly damaging (0.374) a g d s T N c.4467Gb0e;T p.R1489S 0.85 0.43 0.78 0.24 12.8 Benign (0.047) p h l s n a e T Q K R c.4670Ab0e;G p.Y1557C 0.85 0.13 0.80 0 8.8 Probably damaging (0.999) f W Y c.5138Ab0e;G p.Q1713R 0 0 0 0 0 Probably damaging (0.997) Q c.5177Cb0e;A p.T1726N 0 0 0 0 0 Probably damaging (0.880) s A T c.5646Gb0e;A p.M1882I 0 0 0.75 0 37.4 Probably damaging (0.999) M c.6306Cb0e;A p.D2102E 0 0 0 0 0 Probably damaging (0.99) D c.6718Ab0e;G p.T2240A 0 0 0 0 0 Probably damaging (0.991) T c.160af9;2Tb0e;C 0.81 0.86 0.79 0 44.4 c.1240afa;2Ab0e;G 0.82 0.81 0 0 81.5 c.2382af9;1Gb0e;A 0.79 0.64 0 0 71.7 c.2919afa;2Ab0e;G 0.9 0.92 0 0 90.9 c.3522af9;5delG 0.87 0.57 0 0.18 63 c.3523afa;1Gb0e;A 0.9 0.89 0 0 89 Splice site shift of 1 bp c.3814afa;2Ab0e;G 0.91 0.9 0 0 90.6 c.4352af9;1Gb0e;A 0.74 0.82 0 0 78 c.4635afa;1Gb0e;T 0.86 0.89 0 0 87.5 New splice site 7 bp downstream c.5312af9;1Gb0e;A 0.81 0.91 0 0 86.1 c.5836afa;2Ab0e;C 0.89 0.87 0 0 88 c.6387afa;1Gb0e;T 0.77 0.87 0 0 82 c.6479af9;1Gb0e;A 0.82 0.87 0 0 85 c.6479af9;1Gb0e;C 0.82 0.31 0 0 56.6 c.1100afa;6Tb0e;A 0 0 0.9 0.93 91.6 Creates new splice site c.351_352delAG p.S119fs Frameshift c.564delA p.E189Cfs Frameshift c.885delC p.L296Cfs Frameshift c.1374delA p.T459Qfs Frameshift c.3543delT p.K1182Rfs Frameshift c.3846delA p.G1283Dfs Frameshift c.4734delG p.L1580* Stop codon c.5932delA p.T1979Qfs Frameshift c.6317_6323del p.R2107_ GCCGCAT M2108delfs Frameshift c.121Gb0e;A p.W41* Stop codon c.318Tb0e;G p.Y106* Stop codon c.1906Cb0e;T p.Q636* Stop codon c.4639Ab0e;T p.K1547* Stop codon For SpliceSiteFinder and GeneSplicer, 1 is the highest score for splice site activity and 0 is the lowest.
X
ABCA4 p.Lys1547* 21911583:120:3382
status: NEW[hide] The external limiting membrane in early-onset Star... Invest Ophthalmol Vis Sci. 2014 Aug 19;55(10):6139-49. doi: 10.1167/iovs.14-15126. Lee W, Noupuu K, Oll M, Duncker T, Burke T, Zernant J, Bearelly S, Tsang SH, Sparrow JR, Allikmets R
The external limiting membrane in early-onset Stargardt disease.
Invest Ophthalmol Vis Sci. 2014 Aug 19;55(10):6139-49. doi: 10.1167/iovs.14-15126., [PMID:25139735]
Abstract [show]
PURPOSE: To describe pathologic changes of the external limiting membrane (ELM) in young patients with early-onset Stargardt (STGD1) disease. METHODS: Twenty-six STGD1 patients aged younger than 20 years with confirmed disease-causing adenosine triphosphate-binding cassette, subfamily A, member 4 (ABCA4) alleles and 30 age-matched unaffected individuals were studied. Spectral-domain optical coherence tomography (SD-OCT), fundus autofluorescence (AF), and color fundus photography (CFP) images, as well as full-field electroretinograms were obtained and analyzed for one to four visits in each patient. RESULTS: The ELM in all patients exhibited a distinct thickening that was not observed in unaffected individuals. In addition, accumulations of reflective deposits were noted in the outer nuclear layer in every patient. Four patients exhibited a concave protuberance or bulging of a thickened and hyperreflective ELM band within the fovea containing preserved photoreceptors. Longitudinal SD-OCT data in several patients revealed the persistence of this ELM abnormality over a period of time (1-4 years). Furthermore, the edges of the inner segment ellipsoid band appeared to recede earlier than the ELM band in active lesions. CONCLUSIONS: Structural changes seen in the ELM of this cohort may reflect a gliotic response to cellular stress at the photoreceptor level in early-onset STGD1.
Comments [show]
None has been submitted yet.
No. Sentence Comment
93 [W1408R;R1640W] P20 18 African American 20/125 (0.80) 20/50 (0.40) 2 2 Mid 5 p.R1640W ND P21 12 Caucasian 20/50 (0.40) 20/50 (0.40) 1 1 6 p.W821R p.C2150Y P22 17 Indian 20/40 (0.30) 20/100 (0.70) 1 n/a Mid 3 p.G1961E c.6729&#fe;4_&#fe;18del P23 10 Indian 20/400 (1.30) 20/400 (1.30) 2 2 Early 3 c.885delC p.R537C P24 19 Caucasian 20/20 (0.00) 20/20 (0.00) 1 n/a ND p.G863A c.5898&#fe;1G>A P25 16 Middle Eastern 20/80 (0.60) 20/100 (0.70) 1 1 4 p.A1773V p.G1961E P26 17 Caucasian 20/150 (0.88) 20/200 (1.00) 1 1 2 p.K1547* p.R2030Q ND, not determined; n/a, not available.
X
ABCA4 p.Lys1547* 25139735:93:515
status: NEW[hide] Quantitative fundus autofluorescence distinguishes... Ophthalmology. 2015 Feb;122(2):345-55. doi: 10.1016/j.ophtha.2014.08.017. Epub 2014 Oct 3. Duncker T, Tsang SH, Lee W, Zernant J, Allikmets R, Delori FC, Sparrow JR
Quantitative fundus autofluorescence distinguishes ABCA4-associated and non-ABCA4-associated bull's-eye maculopathy.
Ophthalmology. 2015 Feb;122(2):345-55. doi: 10.1016/j.ophtha.2014.08.017. Epub 2014 Oct 3., [PMID:25283059]
Abstract [show]
PURPOSE: Quantitative fundus autofluorescence (qAF) and spectral-domain optical coherence tomography (SD OCT) were performed in patients with bull's-eye maculopathy (BEM) to identify phenotypic markers that can aid in the differentiation of ABCA4-associated and non-ABCA4-associated disease. DESIGN: Prospective cross-sectional study at an academic referral center. SUBJECTS: Thirty-seven BEM patients (age range, 8-60 years) were studied. All patients exhibited a localized macular lesion exhibiting a smooth contour and qualitatively normal-appearing surrounding retina without flecks. Control values consisted of previously published data from 277 healthy subjects (374 eyes; age range, 5-60 years) without a family history of retinal dystrophy. METHODS: Autofluorescence (AF) images (30 degrees , 488-nm excitation) were acquired with a confocal scanning laser ophthalmoscope equipped with an internal fluorescent reference to account for variable laser power and detector sensitivity. The grey levels (GLs) from 8 circularly arranged segments positioned at an eccentricity of approximately 7 degrees to 9 degrees in each image were calibrated to the reference (0 GL), magnification, and normative optical media density to yield qAF. In addition, horizontal SD OCT images through the fovea were obtained. All patients were screened for ABCA4 mutations using the ABCR600 microarray, next-generation sequencing, or both. MAIN OUTCOME MEASURES: Quantitative AF, correlations between AF and SD OCT, and genotyping for ABCA4 variants. RESULTS: ABCA4 mutations were identified in 22 patients, who tended to be younger (mean age, 21.9+/-8.3 years) than patients without ABCA4 mutations (mean age, 42.1+/-14.9 years). Whereas phenotypic differences were not obvious on the basis of qualitative fundus AF and SD OCT imaging, with qAF, the 2 groups of patients were clearly distinguishable. In the ABCA4-positive group, 37 of 41 eyes (19 of 22 patients) had qAF8 of more than the 95% confidence interval for age. Conversely, in the ABCA4-negative group, 22 of 26 eyes (13 of 15 patients) had qAF8 within the normal range. CONCLUSIONS: The qAF method can differentiate between ABCA4-associated and non-ABCA4-associated BEM and may guide clinical diagnosis and genetic testing.
Comments [show]
None has been submitted yet.
No. Sentence Comment
66 [L541P; A1038V] 438 432 16 M 25 White 0.60 0.60 p.S84fs p.R2107H 294 17 F 24 Black 0.70 0.88 p.G991R p.L1138P 321 326 18 M 26 White 0.00y 0.00y p.R1300* p.R2106C 419 412 19 M 11 White 0.40z 0.40z p.W821R p.C2150Y 304 296 20 F 16 White 0.70 0.40 p.K1547* p.R2030Q 481 513 21 F 13 White 1.30 1.00 pR1108C p.Q1412* 511 528 22 F 18 White 0.00 0.00 p.G863A c.5898&#fe;1G/A 465 431 Mutations in Other Genes 23 F 16 White 0.40 0.48 GUCY2D e p.R838H 152 165 24 M 53 Black 0.88 0.88 CNGA3 e p.
X
ABCA4 p.Lys1547* 25283059:66:247
status: NEW[hide] Quantitative Fundus Autofluorescence and Optical C... Invest Ophthalmol Vis Sci. 2015 Nov 1;56(12):7274-85. doi: 10.1167/iovs.15-17371. Duncker T, Stein GE, Lee W, Tsang SH, Zernant J, Bearelly S, Hood DC, Greenstein VC, Delori FC, Allikmets R, Sparrow JR
Quantitative Fundus Autofluorescence and Optical Coherence Tomography in ABCA4 Carriers.
Invest Ophthalmol Vis Sci. 2015 Nov 1;56(12):7274-85. doi: 10.1167/iovs.15-17371., [PMID:26551331]
Abstract [show]
PURPOSE: To assess whether carriers of ABCA4 mutations have increased RPE lipofuscin levels based on quantitative fundus autofluorescence (qAF) and whether spectral-domain optical coherence tomography (SD-OCT) reveals structural abnormalities in this cohort. METHODS: Seventy-five individuals who are heterozygous for ABCA4 mutations (mean age, 47.3 years; range, 9-82 years) were recruited as family members of affected patients from 46 unrelated families. For comparison, 57 affected family members with biallelic ABCA4 mutations (mean age, 23.4 years; range, 6-67 years) and two noncarrier siblings were also enrolled. Autofluorescence images (30 degrees , 488-nm excitation) were acquired with a confocal scanning laser ophthalmoscope equipped with an internal fluorescent reference. The gray levels (GLs) of each image were calibrated to the reference, zero GL, magnification, and normative optical media density to yield qAF. Horizontal SD-OCT scans through the fovea were obtained and the thicknesses of the outer retinal layers were measured. RESULTS: In 60 of 65 carriers of ABCA4 mutations (age range, 9-60), qAF levels were within normal limits (95% confidence level) observed for healthy noncarrier subjects, while qAF levels of affected family members were significantly increased. Perifoveal fleck-like abnormalities were observed in fundus AF images in four carriers, and corresponding changes were detected in the outer retinal layers in SD-OCT scans. Thicknesses of the outer retinal layers were within the normal range. CONCLUSIONS: With few exceptions, individuals heterozygous for ABCA4 mutations and between the ages of 9 and 60 years do not present with elevated qAF. In a small number of carriers, perifoveal fleck-like changes were visible.
Comments [show]
None has been submitted yet.
No. Sentence Comment
62 Continued Subject Sex Age Race/ Ethnicity Relationship to Proband ABCA4 Mutation BCVA, logMAR Eye Segmented qAF8 OD OS OD OS S38.3 M 50.9 White Father p.C2150Y 0.00 0.00 OS 336 380 S39.3 F 42.5 White Mother c.5714&#fe;5G>A 0.00 0.00 n/a 462 393 S39.4 F 18.4 White Sister c.5714&#fe;5G>A 0.00 0.00 n/a 222 212 S40.2 F 50.1 White Mother p.R2030Q 0.00 0.00 OD 433 n/a S40.3 M 48.8 White Father p.K1547* 0.00 0.00 OS n/a 477 S41.2 F 60.3 White Mother p.C54Y 0.00 0.00 OS n/a n/a S42.2 F 44.5 White Mother p.Q1412* 0.10 0.00 OS 264 291 S42.3 M 44.2 White Father p.R1108C 0.30 0.18 OD 264 232 S43.2 F 44.9 White Mother p.G1961E 0.00 0.00 OS 404 n/a S44.3 M 37.1 Asian Father c.4248_4250del 0.00 0.00 OD 307 317 S45.2 F 66.3 White Mother p.N965Y 0.18 0.40 n/a n/a n/a S45.3 M 68.0 White Father p.P1486L 0.00 0.00 n/a n/a n/a S46 M 32.3 White Spouseߤ p.T897I 0.12 0.12 OD 194 200 BCVA, best-corrected visual acuity; logMAR, logarithm of the minimum angle of resolution; OD, right eye; OS, left eye; qAF8, average quantitative autofluorescence of the 8 measurement sites from all available images per eye; n/a, not available.
X
ABCA4 p.Lys1547* 26551331:62:393
status: NEW75 [W1408R;R1640W] 1.00 1.00 n/a n/a P 33.1&#a7; M 23.0 White p.R2030Q p.G1961E 1.00 1.00 334 347 P 34.1 M 46.9 White p.C1490Y p.G1961E 0.40 0.30 376 384 P 35.1ߥ M 24.8 White c.3050&#fe;5G>A p.G1961E 0.00 0.00 381 451 P 36.1ߥ F 29.3 Hispanic p.L541P p.G1961E 0.40 0.40 479 487 P 37.1ߤ F 24.7 White p.G1961E p.C2150R 0.88 0.88 405 396 P 38.1&#a7; M 11.7 White p.W821R p.C2150Y 0.40 0.40 306 n/a P 39.1 F 12.8 White p.P1380L c.5714&#fe;5G>A 0.60 0.40 558 573 P 39.2 M 14.1 White p.P1380L c.5714&#fe;5G>A 0.88 0.88 395 462 P 40.1ߤ F 16.2 White p.K1547* p.R2030Q 0.70 0.40 481 513 P 41.1 F 19.0 White p.C54Y 0.88 0.88 n/a n/a P 42.1ߤ F 13.0 White p.R1108C p.Q1412* 1.30 1.00 511 528 P 43.1ߤ M 17.4 White p.A1773V p.G1961E 0.88 0.88 340 366 P 44.1 M 14.0 Asian p.R408* c.4248_4250del 1.30 1.30 n/a n/a P 44.2 F 7.0 Asian p.R408* c.4248_4250del 1.30 1.30 n/a n/a P 45.1 F 42.4 White p.N965Y p.P1486L 0.10 0.40 n/a n/a BCVA, best-corrected visual acuity; logMAR, logarithm of the minimum angle of resolution; OD, right eye; OS, left eye; qAF8, average quantitative autofluorescence of the 8 measurement sites from all available images per eye; n/a, not available.
X
ABCA4 p.Lys1547* 26551331:75:564
status: NEW