ABCA4 p.Tyr1557Cys
Predicted by SNAP2: | A: D (75%), C: D (71%), D: D (80%), E: D (66%), F: D (53%), G: D (80%), H: D (59%), I: D (59%), K: D (71%), L: D (66%), M: D (63%), N: D (75%), P: D (80%), Q: D (66%), R: D (66%), S: D (75%), T: D (66%), V: D (63%), W: D (59%), |
Predicted by PROVEAN: | A: D, C: D, D: D, E: D, F: D, G: D, H: D, I: D, K: D, L: D, M: D, N: D, P: D, Q: D, R: D, S: D, T: D, V: D, W: D, |
[switch to compact view]
Comments [show]
None has been submitted yet.
[hide] Analysis of the ABCA4 gene by next-generation sequ... Invest Ophthalmol Vis Sci. 2011 Oct 31;52(11):8479-87. doi: 10.1167/iovs.11-8182. Zernant J, Schubert C, Im KM, Burke T, Brown CM, Fishman GA, Tsang SH, Gouras P, Dean M, Allikmets R
Analysis of the ABCA4 gene by next-generation sequencing.
Invest Ophthalmol Vis Sci. 2011 Oct 31;52(11):8479-87. doi: 10.1167/iovs.11-8182., [PMID:21911583]
Abstract [show]
PURPOSE: To find all possible disease-associated variants in coding sequences of the ABCA4 gene in a large cohort of patients diagnosed with ABCA4-associated diseases. METHODS: One hundred sixty-eight patients who had been clinically diagnosed with Stargardt disease, cone-rod dystrophy, and other ABCA4-associated phenotypes were prescreened for mutations in ABCA4 with the ABCA4 microarray, resulting in finding 1 of 2 expected mutations in 111 patients and 0 of 2 mutations in 57 patients. The next-generation sequencing (NGS) strategy was applied to these patients to sequence the entire coding region and the splice sites of the ABCA4 gene. Identified new variants were confirmed or rejected by Sanger sequencing and analyzed for possible pathogenicity by in silico programs and, where possible, by segregation analyses. RESULTS: Sequencing was successful in 159 of 168 patients and identified the second disease-associated allele in 49 of 103 (~48%) of patients with one previously identified mutation. Among those with no mutations, both disease-associated alleles were detected in 4 of 56 patients, and one mutation was detected in 10 of 56 patients. The authors detected a total of 57 previously unknown, possibly pathogenic, variants: 29 missense, 4 nonsense, 9 small deletions and 15 splice-site-altering variants. Of these, 55 variants were deemed pathogenic by a combination of predictive methods and segregation analyses. CONCLUSIONS: Many mutations in the coding sequences of the ABCA4 gene are still unknown, and many possibly reside in noncoding regions of the ABCA4 locus. Although the ABCA4 array remains a good first-pass screening option, the NGS platform is a time- and cost-efficient tool for screening large cohorts.
Comments [show]
None has been submitted yet.
No. Sentence Comment
120 Novel Variants Detected by NGS in the ABCA4 Gene and Results of Analysis Using Bioinformatics Software Nucleotide Change Protein Splicing Score Original Splicing Score for New Variant Average Difference Polyphen SIFT SpliceSite Finder-like Gene Splicer SpliceSite Finder-like Gene Splicer c.91Tb0e;C p.W31R 0 0 0 0 0 Probably damaging (0.999) W c.184Cb0e;T p.P62S 0 0 0 0 0 Probably damaging (0.999) P c.770Tb0e;G p.L257R 0 0 0 0 0 Possibly damaging (0.308) m i F L c.1253Tb0e;C p.F418S 0 0 0 0 0 Probably damaging (0.999) F c.1531Cb0e;T p.R511C 0 0 0 0 0 Probably damaging (1.000) R c.1745Ab0e;G p.N582S 0 0 0.74 0.82 77.8 Probably damaging (0.894) d K N c.1868Ab0e;G p.Q623R 0 0.24 0 0 12.1 Probably damaging (0.937) Q c.1964Tb0e;G p.F655C 0 0 0 0 0 Probably damaging (0.999) F c.1977Gb0e;A p.M659I 0 0 0.75 0.85 79.8 Probably damaging (0.999) M c.2243Gb0e;A p.C748Y 0 0 0 0 0 Probably damaging (0.928) g S A C c.2401Gb0e;A p.A801T 0 0 0 0 0 Probably damaging (0.98) A c.2893Ab0e;T p.N965Y 0 0 0 0 0 Probably damaging (0.999) N c.3148Gb0e;A p.G1050S 0 0 0 0 0 Possibly damaging (0.786) G c.3205Ab0e;G p.K1069E 0 0 0 0 0 Probably damaging (0.993) K c.3279Cb0e;A p.D1093E 0 0 0 0 0 Probably damaging (0.99) D c.3350Cb0e;T p.T1117I 0 0 0 0 0 Probably damaging (0.995) T c.3655Gb0e;C p.A1219P 0.77 0 0.74 0 1.5 Probably damaging (0.991) A c.3812Ab0e;G p.E1271G 0.8 0.35 0.71 0 21.8 Probably damaging (0.995) E c.4177Gb0e;A p.V1393I 0 0 0 0 0 Benign (0.000) VI c.4217Ab0e;G p.H1406R 0 0 0 0 0 Probably damaging (0.986) r p q a t k e g n S D H c.4248Cb0e;A p.F1416L 0.79 0.1 0.79 0.1 0.27 Probably damaging (0.891) F c.4326Cb0e;A p.N1442K 0 0 0 0 0 Possibly damaging (0.374) a g d s T N c.4467Gb0e;T p.R1489S 0.85 0.43 0.78 0.24 12.8 Benign (0.047) p h l s n a e T Q K R c.4670Ab0e;G p.Y1557C 0.85 0.13 0.80 0 8.8 Probably damaging (0.999) f W Y c.5138Ab0e;G p.Q1713R 0 0 0 0 0 Probably damaging (0.997) Q c.5177Cb0e;A p.T1726N 0 0 0 0 0 Probably damaging (0.880) s A T c.5646Gb0e;A p.M1882I 0 0 0.75 0 37.4 Probably damaging (0.999) M c.6306Cb0e;A p.D2102E 0 0 0 0 0 Probably damaging (0.99) D c.6718Ab0e;G p.T2240A 0 0 0 0 0 Probably damaging (0.991) T c.160af9;2Tb0e;C 0.81 0.86 0.79 0 44.4 c.1240afa;2Ab0e;G 0.82 0.81 0 0 81.5 c.2382af9;1Gb0e;A 0.79 0.64 0 0 71.7 c.2919afa;2Ab0e;G 0.9 0.92 0 0 90.9 c.3522af9;5delG 0.87 0.57 0 0.18 63 c.3523afa;1Gb0e;A 0.9 0.89 0 0 89 Splice site shift of 1 bp c.3814afa;2Ab0e;G 0.91 0.9 0 0 90.6 c.4352af9;1Gb0e;A 0.74 0.82 0 0 78 c.4635afa;1Gb0e;T 0.86 0.89 0 0 87.5 New splice site 7 bp downstream c.5312af9;1Gb0e;A 0.81 0.91 0 0 86.1 c.5836afa;2Ab0e;C 0.89 0.87 0 0 88 c.6387afa;1Gb0e;T 0.77 0.87 0 0 82 c.6479af9;1Gb0e;A 0.82 0.87 0 0 85 c.6479af9;1Gb0e;C 0.82 0.31 0 0 56.6 c.1100afa;6Tb0e;A 0 0 0.9 0.93 91.6 Creates new splice site c.351_352delAG p.S119fs Frameshift c.564delA p.E189Cfs Frameshift c.885delC p.L296Cfs Frameshift c.1374delA p.T459Qfs Frameshift c.3543delT p.K1182Rfs Frameshift c.3846delA p.G1283Dfs Frameshift c.4734delG p.L1580* Stop codon c.5932delA p.T1979Qfs Frameshift c.6317_6323del p.R2107_ GCCGCAT M2108delfs Frameshift c.121Gb0e;A p.W41* Stop codon c.318Tb0e;G p.Y106* Stop codon c.1906Cb0e;T p.Q636* Stop codon c.4639Ab0e;T p.K1547* Stop codon For SpliceSiteFinder and GeneSplicer, 1 is the highest score for splice site activity and 0 is the lowest.
X
ABCA4 p.Tyr1557Cys 21911583:120:1854
status: NEW[hide] Quantitative fundus autofluorescence in recessive ... Invest Ophthalmol Vis Sci. 2014 May 1;55(5):2841-52. doi: 10.1167/iovs.13-13624. Burke TR, Duncker T, Woods RL, Greenberg JP, Zernant J, Tsang SH, Smith RT, Allikmets R, Sparrow JR, Delori FC
Quantitative fundus autofluorescence in recessive Stargardt disease.
Invest Ophthalmol Vis Sci. 2014 May 1;55(5):2841-52. doi: 10.1167/iovs.13-13624., [PMID:24677105]
Abstract [show]
PURPOSE: To quantify fundus autofluorescence (qAF) in patients with recessive Stargardt disease (STGD1). METHODS: A total of 42 STGD1 patients (ages: 7-52 years) with at least one confirmed disease-associated ABCA4 mutation were studied. Fundus AF images (488-nm excitation) were acquired with a confocal scanning laser ophthalmoscope equipped with an internal fluorescent reference to account for variable laser power and detector sensitivity. The gray levels (GLs) of each image were calibrated to the reference, zero GL, magnification, and normative optical media density to yield qAF. Texture factor (TF) was calculated to characterize inhomogeneities in the AF image and patients were assigned to the phenotypes of Fishman I through III. RESULTS: Quantified fundus autofluorescence in 36 of 42 patients and TF in 27 of 42 patients were above normal limits for age. Young patients exhibited the relatively highest qAF, with levels up to 8-fold higher than healthy eyes. Quantified fundus autofluorescence and TF were higher in Fishman II and III than Fishman I, who had higher qAF and TF than healthy eyes. Patients carrying the G1916E mutation had lower qAF and TF than most other patients, even in the presence of a second allele associated with severe disease. CONCLUSIONS: Quantified fundus autofluorescence is an indirect approach to measuring RPE lipofuscin in vivo. We report that ABCA4 mutations cause significantly elevated qAF, consistent with previous reports indicating that increased RPE lipofuscin is a hallmark of STGD1. Even when qualitative differences in fundus AF images are not evident, qAF can elucidate phenotypic variation. Quantified fundus autofluorescence will serve to establish genotype-phenotype correlations and as an outcome measure in clinical trials.
Comments [show]
None has been submitted yet.
No. Sentence Comment
48 Four other mutations were found in two to four patients: R1640W (four patients from three families); Y1557C (two patients from one family); G851D (two patients from one family); and R2030Q (two patients from two families).
X
ABCA4 p.Tyr1557Cys 24677105:48:101
status: NEW82 [L541P; A1038V]; p.R1640W 850 4.4 12 F 27 9 1.30 1.00 - III p.P1380L; p.P1380L 577 4.8 13 F 39 8 0.12 0.00 - I c.250_251insCAAA 616 2.3 14 M 23 4 0.88 0.60 - II p.C54Y 535 5.1 15.1 M 49 17 1.00 0.88 I I p.Y1557C 646 604 4.1 3.9 15.2 M 46 7 0.10 0.48 I I p.Y1557C 456 508 2.6 2.3 16.1 F 27 14 0.88 0.88 III III p.L2027F; p.G851D 448 459 6.0 6.3 16.2 F 29 19 1.30 1.18 III III p.L2027F; p.G851D 538 569 7.4 7.9 17 M 22 18 1.30 1.00 III III p.P1380L; p.R2030Q 434 411 5.7 6.0 18 M 37 16 0.70 0.70 I I p.G1961E; p.G1961E 281 279 2.6 2.2 19 F 33 5 0.88 0.70 I I p.G1961E; c.4540-2A > G 412 420 2.5 2.8 20 F 26 12 0.60 0.60 - I p.G1961E; p.
X
ABCA4 p.Tyr1557Cys 24677105:82:206
status: NEWX
ABCA4 p.Tyr1557Cys 24677105:82:257
status: NEW180 The mutations were confirmed in six or more patients (G1961E, L541P/A1038V, L2027F, and P1380L) or in two to four patients (R1640W, Y1557C, G851D, and R2030Q).
X
ABCA4 p.Tyr1557Cys 24677105:180:132
status: NEW