ABCC7 p.Tyr1219Phe

[switch to full view]
Comments [show]
Publications
PMID: 16966475 [PubMed] Zhou Z et al: "The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics."
No. Sentence Comment
106 The ATP dose-response relationships of Y1219F and Y1219I mutants lie between those of WT and Y1219G.
X
ABCC7 p.Tyr1219Phe 16966475:106:39
status: NEW
Login to comment

122 (A) Normalized ATP dose-response relationships of WT (black line, Michaelis-Menten fit from Fig. 1 D), Y1219W (brown), Y1219F (pink), Y1219I (blue), and Y1219G (green line, Michaelis-Menten fit from Fig. 1 D).
X
ABCC7 p.Tyr1219Phe 16966475:122:119
status: NEW
Login to comment

124 K1/2 values are 0.13 ± 0.02 mM (Y1219W), 0.46 ± 0.06 mM (Y1219F), and 0.94 ± 0.20 mM (Y1219I), respectively.
X
ABCC7 p.Tyr1219Phe 16966475:124:67
status: NEW
Login to comment

PMID: 17700963 [PubMed] Bompadre SG et al: "Cystic fibrosis transmembrane conductance regulator: a chloride channel gated by ATP binding and hydrolysis."
No. Sentence Comment
180 The mutation Y1219G shows an ATP dose-response relationship shifted more than 50-fold towards higher [ATP], however more conservative mutations (Y1219I, Y1219F) show smaller shifts, indicating the importance of the nature of the side chain in the interaction with the ATP molecule.
X
ABCC7 p.Tyr1219Phe 17700963:180:153
status: NEW
Login to comment

PMID: 18391167 [PubMed] Chen TY et al: "CLC-0 and CFTR: chloride channels evolved from transporters."
No. Sentence Comment
787 The ATP dose-response relationships of Y1219F and Y1219I mutants lie between those of wild type and Y1219G, suggesting a correlation between changes of the ATP sensitivity and the chemical natures of the side chain at this position.
X
ABCC7 p.Tyr1219Phe 18391167:787:39
status: NEW
Login to comment

PMID: 20628841 [PubMed] Shimizu H et al: "A stable ATP binding to the nucleotide binding domain is important for reliable gating cycle in an ABC transporter CFTR."
No. Sentence Comment
19 The degree of dose-response shift, a descending order of Y1218G, Y1219I, Y1219F and Y1219W, seemed to depend on the similarity of chemical properties, e.g., hydrophobicity and p bond by aromatic ring, of the side chains introduced by the mutations to tyrosine.
X
ABCC7 p.Tyr1219Phe 20628841:19:73
status: NEW
Login to comment

59 Figure 2b compares macroscopic current relaxations for Y1219G, Y1219I, Y1219F and Y1219W mutants.
X
ABCC7 p.Tyr1219Phe 20628841:59:71
status: NEW
Login to comment

61 The result with the Y1219F mutant lies c4; = 714 ms A B 2 s 0.4 pA ATP 5 mM ATP 5 mM 5 s 40 pA 1 s 20 pA Fig. 1 Macroscopic and microscopic currents of wild-type (WT)-CFTR.
X
ABCC7 p.Tyr1219Phe 20628841:61:20
status: NEW
Login to comment

67 The time constants of the initial fast phase for all the Y1219 mutants are within hundreds of milliseconds (sfast: 504 &#b1; 76 ms, n = 5 for Y1219G; 450 &#b1; 44 ms, n = 7 for Y1219I; 571 &#b1; 142 ms, n = 4 for Y1219F; 513 &#b1; 66 ms, n = 5 for Y1219W) and there is not significant difference in the fast time constant among these Y1219 mutants (Fig. 2b).
X
ABCC7 p.Tyr1219Phe 20628841:67:213
status: NEW
Login to comment

68 On the other hand, the time constants of the slow component for Y1219F and Y1219W are shorter than those of Y1219G and Y1219I (Fig. 3a).
X
ABCC7 p.Tyr1219Phe 20628841:68:64
status: NEW
Login to comment

69 More importantly, the fraction of the slow component (Fig. 3b) shows a gradual decrease as the mutation becomes less 'preserved` (Y1219G [ Y1219I [ Y1219F [ Y1219W).
X
ABCC7 p.Tyr1219Phe 20628841:69:148
status: NEW
Login to comment

70 It should be noted that, for technical reasons (detailed in ''Discussion``), our calculation of the fraction of the slow component is somewhat overestimated for Y1219F and Y1219W.
X
ABCC7 p.Tyr1219Phe 20628841:70:161
status: NEW
Login to comment

71 The actual values for Y1219F and Y1219W are lower than those shown in Fig. 3b.
X
ABCC7 p.Tyr1219Phe 20628841:71:22
status: NEW
Login to comment

76 The high affinity of P-ATP was suggested to come from its slow dissociation rate from NBD1 and NBD2 whereas the closing rate in P-ATP was just a little slower than that in B A C Y1219G ATP 5 mM 10 s 1 pA 25 s 2 pA Y1219G 25 s 2 pA ATP 5 mM W401G W 9 1 2 1 Y I 9 1 2 1 Y Y1219F 50 s 50 s 20 pA 50 s 20 pA 50 s 20 pA 20 pA ATP 5 mM 10 s 0.4 pA Y1219G Fig. 2 Macroscopic current relaxations for Y1219 and W401 mutants.
X
ABCC7 p.Tyr1219Phe 20628841:76:270
status: NEW
Login to comment

80 b Macroscopic current relaxations upon ATP wash-out for Y1219G, Y1219I, Y1219F and Y1219W.
X
ABCC7 p.Tyr1219Phe 20628841:80:72
status: NEW
Login to comment

82 The time constant and the fraction of the slow component are summarized in Fig. 3. c Single channel recording of Y1219G-CFTR showing a long opening even after ATP removal 35 30 25 20 15 10 5 0 Y1219G Y1219I Y1219F Y1219W 0.5 0.4 0.3 0.2 0.1 0.0 Y1219G Y1219I Y1219F Y1219W A slow / (A slow + A fast ) c4; slow (s) A B Fig. 3 Kinetic parameters of macroscopic current relaxations for Y1219G, Y1219I, Y1219F and Y1219W.
X
ABCC7 p.Tyr1219Phe 20628841:82:207
status: NEW
X
ABCC7 p.Tyr1219Phe 20628841:82:259
status: NEW
X
ABCC7 p.Tyr1219Phe 20628841:82:402
status: NEW
Login to comment

83 a Time constants of the slow component of the current relaxation for the Y1219 mutants. Y1219G: n = 5; Y1219I: n = 7; Y1219F: n = 4; and Y1219W: n = 5. b Fraction of the slow component (Aslow/Aslow ?
X
ABCC7 p.Tyr1219Phe 20628841:83:118
status: NEW
Login to comment

84 Afast) for the Y1219 mutants. Y1219G: n = 5; Y1219I: n = 7; Y1219F: n = 4; and Y1219W: n = 5 ATP because of their similar rate-limiting hydrolyzing rates [11].
X
ABCC7 p.Tyr1219Phe 20628841:84:60
status: NEW
Login to comment

132 Although the results with Y1219G and Y1219I mutations are quantified accurately, this may not be the case with the data for Y1219F and Y1219W.
X
ABCC7 p.Tyr1219Phe 20628841:132:124
status: NEW
Login to comment

162 If different mutations at Y1219 can affect the entry rate and the exit rate differently as shown in Table 2, this hypothesis may explain most of the results Table 1 Parameter sets (s-1 ) for the ''kiss and run`` hypothesis kCO1 kO1C kO1O2 kO2C Y1219G 3 or 0a 3 2 9 10-2 3.8 9 10-2 Y1219I : : 1.3 9 10-2 : Y1219F : : 1.1 9 10-2 : Y1219W : : 4 9 10-3 : a kCO1 was set to 3 s-1 for simulating the ''with ATP`` condition and 0 s-1 for simulating the ''after the ATP washout`` condition.
X
ABCC7 p.Tyr1219Phe 20628841:162:305
status: NEW
Login to comment

166 b Representative reproduced macroscopic current relaxations mimicking those in Y1219G (red), Y1219I (green), Y1219F (cyan) and Y1219W (blue).
X
ABCC7 p.Tyr1219Phe 20628841:166:109
status: NEW
Login to comment

PMID: 25225552 [PubMed] Lin WY et al: "A single amino acid substitution in CFTR converts ATP to an inhibitory ligand."
No. Sentence Comment
133 Y1219F, Y1219I, and Y1219G, mutations known to cause a graded change of the apparent affinity for Figure 3.ߓ Paradoxical [ATP] dependence of G551D-CFTR currents supports the hypothesis of two ATP-binding sites exerting opposite actions.
X
ABCC7 p.Tyr1219Phe 25225552:133:0
status: NEW
Login to comment

168 (A-C) Real-time current traces in response to ATP removal for G551D/Y1219F (A), G551D/Y1219I (B), and G551D/Y1219G (C).
X
ABCC7 p.Tyr1219Phe 25225552:168:68
status: NEW
Login to comment